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Abstract  

The Computerized Adaptive Practice (CAP) system describes a set of algorithms for 

assessing player’s expertise and difficulties of in-game problems and for adapting the 

latter to the former. However, an effective use of CAP requires that in-game problems 

are designed carefully and refined over time to avoid possible barriers to learning. 

This study proposes a methodology and three different instruments for analyzing the 

problem set in CAP-enabled games. The instruments include the Guttman scale, a 

ranked order, and a Hasse diagram that offer analysis at different levels of granularity 

and complexity. The methodology proposes to use quantified difficulty measures to 

infer topology of the problem set. It is well-suited for serious games that emphasize 

practice and repetitive play. The emphasis is put on the simplicity of use and 

visualization of the problem space to maximally support teachers and game 

developers in designing and refining CAP-enabled games. Two case studies 

demonstrate practical applications of the proposed instruments on empirical data. 

Future research directions are proposed to address potential drawbacks. 

Keywords: Computerized adaptive practice, Game difficulty adaptation, Problem space analysis, 

Ranked order, Hasse diagram; 

1. Introduction  

An effective design pattern for serious games is to have a set of re-playable problems of varying 

difficulty [1]. Such design promotes the acquisition of new knowledge via a gradual increase in 

difficulty and knowledge consolidation via practice. Furthermore, the design is easy to integrate with 

activities both inside and outside of classrooms.  

However, the design imposes two major challenges during its development and use. First, 

to improve learning efficiency, an adaptive mechanism is necessary to detect player’s skill level and 

administer a problem of matching difficulty. For this purpose, [2] proposed the Computerized 

Adaptive Practice (CAP) algorithm that assesses problem difficulty and player skill to match the 

former to the latter. Compared to other methods [3], CAP is simpler and easier to use by game 

developers. 

Second, to offer a coherent and smooth learning experience to players, the problem set 

should be carefully designed and refined during the game’s lifetime. However, teachers and 

developers may lack access to domain experts who can design and maintain a proper set of problems 

for the game. Therefore, there is a need for a formal method that can facilitate analysis and 

refinement of the problem set. Such method should infer implicit dependencies among problems 

composing the set, organize them into a structure coherently presenting the dependencies, and offer 

insight into how these dependencies may define player’s learning experience. Importantly, the 

method should be accessible to teachers and game developers who may lack technical knowledge 

for complex analytics.  
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To address the second issue, we propose a methodology to automatically infer problem 

dependencies from the CAP algorithm’s psychometric measures of difficulty. The proposed 

methodology is further elaborated into a set of analytical instruments incorporating the Guttman 

scale [4], a ranked order, and a Hasse diagram [3,5-6]. These instruments offer both well-defined 

formalization and a graph-based user-friendly visualization of the problem space. 

Section 2 briefly introduces the state of the art on adaptation algorithms. Section 3 provides 

details of the CAP algorithm and discusses how an ill-designed problem set can results in a sub-

optimal learning experience in games using CAP. Section 4 introduces the three instruments for 

analysis of the problem set.  Section 5 provides a practical demonstration of applying the instruments 

on real problem sets from the online serious gaming platform Math Garden [7]. Section 6 discusses 

the methodology in comparison with existing practices. Section 7 touches on future research 

including possible connections to the Knowledge Space Theory [8-9]. Concluding remarks are 

provided in Section 8. 

2. State of the art 

Adapting game difficulty to the player’s expertise level [10-11] can foster more effective learning. 

In the Zone of Proximal Development [12] theory, Vygotsky argued that balancing task challenge 

and learner’s expertise promotes more optimized and paced learning. Flow theory [13] argues that 

such balance maintains learner’s motivation and helps to focus more cognitive resources on the task. 

The 4C/ID [14] instructional model also argues for scaffolded learning of complex skills via tasks 

gradually increasing in difficulty. 

A well-validated method for assessment and adaptation is Knowledge Space Theory (KST, 

[8-9]). KST expresses a player’s knowledge state as a set of problems the player can solve at any 

time during learning. All feasible knowledge states form a knowledge structure where edges 

represent prerequisite dependencies among knowledge states. Knowledge spaces, more constrained 

forms of knowledge structures, can be used for assessment and for personalizing learning paths [3]. 

Building knowledge spaces requires identification of prerequisite dependencies among the problems. 

This step often requires a consultation with domain experts [15-17] or complex analysis of response 

patterns [18-20]. This complexity is a major barrier to KST’s wider adoption. 

Alternatively, the Computerized Adaptive Practice (CAP, [2]) algorithm was specifically 

designed for serious games to automatically and in real time adapt game difficulty to player’s 

expertise. CAP is an extensively modified variation of the Elo rating system [21] that was originally 

developed to assess and match chess players. While many variations of the Elo system exist to match 

human players in competitive online games [22], CAP was designed to match a human player against 

the game rather than another human player. The effectiveness of CAP was extensively validated 

[2,23-25] with an online platform Math Garden [7] that offers serious games as subscription services. 

Currently, Math Garden is used by more than 1500 Dutch schools offering an opportunity to test 

CAP using big data. 

CAP’s adaptation is simpler to use than KST. CAP adopts a psychometric approach to estimate 

problems’ difficulties given players’ responses. The process is automatic and produces quantitative 

and intuitive measures of difficulty that are easy to understand for teachers and developers. However, 

as discussed in section 3, a poorly designed problem set can diminish learning efficiency. The issue 

can be mitigated if the problem set is refined over time, but CAP lacks a formal method for analyzing 

and describing the problem set.   

3. Computer Adaptive Practice system 

3.1 Adaptation and assessment algorithms in CAP  

The section offers a short overview of the Computerized Adaptive Practice (CAP) algorithm. A more 

detailed discussion is available in [2,26]. CAP assumes that the game contains a set of playable 

single-player problems. Each problem has a difficulty rating 𝛽 that increases with problem’s 

difficulty. Similarly, each player has an expertise rating 𝜃 that increases with the player’s expertise. 

Given above notions, CAP provides two main functions. 

First, given a player 𝑚 with the expertise rating 𝜃𝑚, CAP selects a problem with the 

difficulty 𝛽 that the player 𝑚 can solve with a target probability of success 𝑃𝑡. The process involves 
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three steps: (a) defining 𝑃𝑡, (b) estimating a target difficulty rating 𝛽𝑡, and (c) selecting a problem 

that closely matches the 𝛽𝑡. Equation 1 is used for estimating the 𝛽𝑡. In Math Garden, 𝑃𝑡 is drawn 

from a normal distribution 𝑁(𝑃 = 0.75, 𝑆𝐷 = 0.1) and restricted to interval 0.5 < 𝑃𝑡 < 1.0 so that 

the player can maintain an average success rate of 75%. According to [2,27], this success rate 

provides a reasonable balance between keeping a player motivated and a maintaining measurement 

precision. The problem 𝑖 is selected if it has the difficulty rating 𝛽𝑖 closest to the 𝛽𝑡. Overall, the 

CAP system administers easier problems with lower ratings to novice players and gradually 

introduces more difficult problems with higher ratings as the player gains more expertise. 

 

𝛽𝑡 =  𝜃𝑚 + 𝑙𝑛
1−𝑃𝑡

𝑃𝑡
;      min|𝛽𝑖 − 𝛽𝑡|                                                                                           (Eq. 1) 

𝑆𝑖𝑚 = (2𝑥𝑖𝑚 − 1) (1 −
𝑡𝑖𝑚

𝑑𝑖
) ;         𝐸(𝑆𝑖𝑚) =

𝑒2(𝜃𝑚−𝛽𝑖)+1

𝑒2(𝜃𝑚−𝛽𝑖)−1
−

1

𝜃𝑚−𝛽𝑖
                                             (Eq. 2) 

�̃�𝑚 = 𝜃𝑚 + 𝐾𝑚(𝑆𝑖𝑚 − 𝐸(𝑆𝑖𝑚));         𝛽𝑖 = 𝛽𝑖 + 𝐾𝑖(𝐸(𝑆𝑖𝑚) − 𝑆𝑖𝑚)                                           (Eq. 3) 

 

Second, 𝛽𝑖 and 𝜃𝑚 are re-assessed based on the player 𝑚's performance in the problem 𝑖. 
Performance is defined by the accuracy 𝑥𝑖𝑚 and the response time 𝑡𝑖𝑚. 𝑥𝑖𝑚 is either zero or one 

indicating whether the player was able to solve the problem, and 𝑡𝑖𝑚 is a duration of time spent on 

the problem. These measures are translated into the observed score 𝑆𝑖𝑚 (Equation 2) using the High 

Speed-High Stakes scoring rule [23]  that accounts for the speed-accuracy trade-off. 𝐸(𝑆𝑖𝑚) is the 

expected score calculated from 𝜃𝑚 and 𝛽𝑖. The term 𝑑𝑖 is a time limit for the problem 𝑖. The 

discrepancy between 𝐸(𝑆𝑖𝑚) and 𝑆𝑖𝑚 is used to re-assess 𝛽𝑖 and 𝜃𝑚 using a modified Elo update 

function (Equation 3). The terms 𝐾𝑚 and 𝐾𝑖 are factors reflecting uncertainties in measurements of 

expertise and difficulty ratings [28]. Overall, if the player performs well then 𝜃𝑚 increases and 𝛽𝑖 

decreases. Vice versa is true if the player demonstrates insufficient performance. Accuracy of 𝜃𝑚 

estimation increases if the player plays more problems, and accuracy of 𝛽𝑖 estimation increases if 

the problem is played many times. 

 

3.2 Learning experience and the problem set in CAP  

Ideally, a problem set should be designed to optimize player’s learning experience. In CAP, a new 

player is assigned a low starting rating 𝜃 (for example a rating equal to the lowest difficulty rating 

in the problem set, 𝜃 = min (𝛽)). 𝜃 is continuously updated as the player plays more problems. 

Changes to 𝜃 over time reflect player’s learning curve. Ideally, the problem set should facilitate an 

optimal learning curve with a continuous upward trend until learning ceiling of the domain is reached 

(dashed curve in Figure 1a). Undesirable trends in a suboptimal learning curve (solid curve in Figure 

1a), such as downward trends and plateaus, should be avoided. These trends not only slow learning 

progress but also can be demotivating to players. 

 

 
 

Figure 1. Optimal (dashed curve) and suboptimal (solid curve) learning curves. 

 

One of the causes of the suboptimal curve can be an inappropriate design of the problem 

set. A player may not be able to transition from easier problems (grey ovals in Figure 1b) to more 

difficult problems (black ovals in Figure 1b) due to high distance in ratings between the two groups 

of problems. This problem can be avoided by adding intermediate problems to close the rating gap. 

Ideally, the problems should be spread uniformly along the difficulty scale to ensure smoother 

learning experience. Figure 1c shows another pattern of administered problems that can cause a 

plateau in the learning curve. The black ovals are problems the player is unable to solve, while the 

grey ovals are problems mastered by the player. This situation can occur if the problem set does not 

represent a homogeneous learning domain, or not all skills within the domain are represented in the 

problem set. In both cases, easier problems may fail to train skills necessary for more difficult 

problems resulting in a learning plateau. 
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To avoid these problems, a careful design and follow-up refinement of the problem set is 

required. For this purpose, we propose various instruments for analyzing the problem set. One of the 

important criteria for these instruments is being practical and accessible to teachers and game 

developers who do not necessarily have the technical knowledge to perform complex analytics. 

Therefore, an emphasis is put on visualizing the problem set and the possible relations between 

problems. Additionally, the proposed instruments analyze the problem set at different levels of 

complexity offering a degree of customization during a practical use. The instruments are based on 

the Guttman scale [4], a ranked order, and a Hasse diagram [3,5-6]. 

4. Methods for analyzing the problem set 

4.1 Guttman scale  

Items with difficulty ratings and belonging to the same domain can be linearly ordered along the 

Guttman scale [4,29]. Next, a quasi-order ⪰ can be defined among the items to establish dependency. 

In our case, the problems can be ordered on the Guttman scale by the difficulty ratings. Ideally, given 

two problems 𝑖 and 𝑗 with ratings 𝛽𝑖 < 𝛽𝑗  , any player who is able to solve 𝑗 should be able to solve 

𝑖: 𝑗 ⪰ 𝑖. For a hypothetical domain 𝑄′ with five problems 𝑄′ = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} where 𝛽𝑎 < 𝛽𝑏 < 𝛽𝑐 <
𝛽𝑒 < 𝛽𝑑, the problems can be positioned on the Guttman scale as shown in Figure 2a. The construct 

is convenient for checking how uniformly the problems are distributed along the difficulty scale. For 

example, there is a big gap between problems 𝑐 and 𝑒 that may slow the learning progress. Also, the 

small distance between problems 𝑒 and 𝑑 may indicate that problems are duplicates in terms of 

learning content. The issue can be resolved by replacing 𝑒 with an easier problem closer to 𝑐, or by 

replacing 𝑑 with a more difficult problem and inserting an additional problem between 𝑒 and 𝑐. 

Figure 2a also indicates a possible learning path the player may take. The learning path can 

be more conveniently visualized as ordered subsets of problems that the player can solve (Figure 2b) 

at any given time. For example, one player may be able to solve subset {𝑎, 𝑏, 𝑐} while another player 

may be able to solve subset {𝑎, 𝑏, 𝑐, 𝑒} but not the entire problem set 𝑄′. The quasi-order of subsets 

shows the order in which the problems are learnt. 

 

 
 

Figure 2. (a) Problems from a hypothetical domain 𝑄′ = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} are placed on the Guttman 

scale in an increasing order of difficulty ratings; (b) A quasi-ordinal structure implied by 𝑄′ ordered 

on the Guttman scale. 

 

While being simple and easy to understand, limitations of the Guttman scale hide important 

dynamics of CAP. There is an unrealistic assumption that every problem on the Guttman scale is 

played at least once and strictly in the order defined by the scale. In reality, some problems may be 

skipped because they are too similar in difficulty to problems that the player has already played. The 

stochastic nature of CAP’s problem selection algorithm (Equation 1) allows two players 𝑚 and 𝑛 of 

the same skill rating (𝜃𝑚 = 𝜃𝑛) to have different histories of solved problems. If there are two 

problems 𝑖 and 𝑗 with the same difficulty ratings (𝛽𝑖 = 𝛽𝑗) then it is possible that the player 𝑚 was 

administered the problem 𝑖 and the player 𝑛 was administered the problem 𝑗. Thus, two players of 

the same skill rating may have diverging subsets of problems they can solve. In other words, there 

can be multiple learning paths in CAP that are defined by distributions of problems along the 
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difficulty scale. This issue can be addressed by using a difficulty rank scale rather than the rating 

scale. 

 

4.2 Ranked order  

We assume that two or more problems can have the same difficulty rank. In CAP, we can define two 

problems 𝑖 and 𝑗 (𝑖, 𝑗 ∈ 𝑄) as having the same ranks (𝑅𝑖 = 𝑅𝑗) if their difficulty ratings are equal 

(𝛽𝑖 = 𝛽𝑗). Figure 3a shows problems from a hypothetical domain 𝑄′ = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔} ordered 

according to the difficulty ranks. The problems are assumed to have following difficulty ratings: 

𝛽𝑎 < 𝛽𝑏 = 𝛽𝑐 < 𝛽𝑑 < 𝛽𝑒 = 𝛽𝑓 < 𝛽𝑔. Based on the ratings, the problems 𝑏 and 𝑐 occupy the same 

rank as well as the problems 𝑒 and 𝑓: 𝛽𝑏 = 𝛽𝑐 → 𝑅𝑏 = 𝑅𝑐 and 𝛽𝑒 = 𝛽𝑓 → 𝑅𝑒 = 𝑅𝑓. 

The ranked order is more expressive than the rating order. For example, the order in Figure 

3a shows that a player who can solve the problem 𝑎 may be administered either the problem 𝑏 or 𝑐. 

Similarly, a player who can solve the problem 𝑑 will be administered either the problem 𝑒 or 𝑓. 

These alternatives offer four distinct learning paths depicted in Figure 3b. Similar to Figure 2a, the 

tree structure shows subsets of problems the player was able to solve along the learning path together 

with the order in which the problems were solved. The graph also provides means to compare 

different players. For example, two players may have taken different learning paths despite both 

being able to solve the problem 𝑔. This difference could have been reflected in the learning curves 

since difficulty can be defined by multiple factors as discussed in section 5. Because of the multi-

faceted nature of difficulty, the assumption of a quasi-order is not present in the rank order. For 

example in Figure 3a, we cannot assume that the player can solve the problem b if the player can 

solve the problems {a,c,d}. Therefore, Figure 3b represents learning paths strictly based on the 

psychometric difficulty estimations and ignoring latent dependencies among problems.  

 

 
 

Figure 3. (a) Problems from a hypothetical domain 𝑄′ = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔} are positioned in an 

increasing order of difficulty ranks. (b) Four possible learning paths implied by the ranked order. 

Each node along the path is a player’s possible learning state. 

 

In practice, two problems are unlikely to have equal difficulty ratings even if they are 

exactly the same. Therefore, a fuzzy approach for evaluating the similarity of two difficulty ratings 

is required. First, we can assume a threshold 𝑇ℎ and a function 𝐷𝑖𝑓𝑓 that calculates a degree of 

difference between two difficulty ratings. The problems 𝑖 and 𝑗 are considered to have difficulty 

ratings that are not significantly different if a degree of difference is below or equal to a threshold: 

𝛽𝑖 ≅ 𝛽𝑗 if 𝑇ℎ ≥ 𝐷𝑖𝑓𝑓(𝛽𝑖 , 𝛽𝑗). If 𝑇ℎ is treated as a free parameter then we only need to define the 

function 𝐷𝑖𝑓𝑓. For this purpose, we can reuse Equation 1. If player's skill rating is equal to problem's 

difficulty rating 𝛽𝑖 = 𝜃, the player is equally likely to succeed or fail (𝑃𝑡 = 0.5). We can use this 

property and substitute the player's skill rating with another problem's difficulty rating 𝛽𝑗 (Equation 

4). If two problems are equal in difficulty 𝛽𝑖 = 𝛽𝑗  then 𝑃𝑡 = 0.5. Otherwise, the difference in 

difficulties is reflected in divergence of 𝑃𝑡 from 0.5. Therefore, the 𝐷𝑖𝑓𝑓 function can be written as 

an absolute difference between 𝑃𝑡 and 0.5 (Equation 5). 

 

𝛽𝑖 =  𝛽𝑗 + 𝑙𝑛
1−𝑃𝑡

𝑃𝑡
;          𝑃𝑡 =

1

𝑒
𝛽𝑖−𝛽𝑗+1

                                                                                         Eq. (4) 

𝐷𝑖𝑓𝑓(𝛽𝑖 , 𝛽𝑗) = |0.5 − 𝑃𝑡|;         𝐷𝑖𝑓𝑓(𝛽𝑖 , 𝛽𝑗) = |0.5 −
1

𝑒
𝛽𝑖−𝛽𝑗+1

|                                              Eq. (5) 
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The output of the function 𝐷𝑖𝑓𝑓(𝛽𝑖 , 𝛽𝑗) indicates an increase or a decrease in difficulty. For 

example, 𝐷𝑖𝑓𝑓(𝛽𝑖 , 𝛽𝑗) = 0.05 means that the problem 𝑖 is more difficult or easier than the problem 

𝑗 by 5%. Accordingly, the threshold 𝑇ℎ can be viewed as a minimum fractional difference between 

difficulties of two items. A possible heuristic approach for choosing the value for 𝑇ℎ is to limit its 

value to two standard deviations of the normal distribution from which 𝑃𝑡 is drawn: 

𝐼𝑓 𝑃𝑡~𝑁(𝜇, 𝜎) 𝑡ℎ𝑒𝑛 𝑇ℎ ≤ 2𝜎. 

Note that due to an exponential component in the Equation 4, the value of 𝑃 is limited to an 

interval (0, 1). Correspondingly, the value of the function 𝐷𝑖𝑓𝑓 is limited to an interval [0, 0.5). 

Thus, the maximum estimated difference between two difficulties cannot exceed 50% even if the 

true difference may be higher. This issue can be safely ignored since setting the threshold above 50% 

may not be necessary in most cases. 

One issue to consider in the proposed method is possible ambiguity into the rank 

assignment. As an example, we can use 𝑄′ = {𝑖, 𝑗, 𝑘} where 𝛽𝑖 < 𝛽𝑗 < 𝛽𝑘, 𝑇ℎ ≥ 𝐷𝑖𝑓𝑓(𝛽𝑖 , 𝛽𝑗), 𝑇ℎ ≥

𝐷𝑖𝑓𝑓(𝛽𝑗 , 𝛽𝑘), and 𝑇ℎ < 𝐷𝑖𝑓𝑓(𝛽𝑖 , 𝛽𝑘). The rank of the problem 𝑘 is ambiguous. One option is to 

assign the problem 𝑘 the same rank as the problems 𝑖 and 𝑗. Alternatively, the problem 𝑘 can be 

assigned a higher rank than the problems 𝑖 and 𝑗. In our current solution, the comparison for the same 

rank is always made with the problem having the lowest difficulty rating. Thus, the problem 𝑗 is 

assigned the same rank as the problem 𝑖, but the problem 𝑘 is assigned a higher rank than the 

problems 𝑖 and 𝑗. 

 

4.3 Expanding the tree structure into the Hasse diagram  

Construction of the tree structure in Figure 3b is based on an assumption that the player can play 

only one problem of the same rank. For example, if the player played the problem 𝑏 then the problem 

𝑐 is not available anymore. This assumption is unlikely to hold in many cases. In CAP, if the player 

underperforms then the player’s skill rating decreases (Equations 2 and 3). Consecutively, the player 

may be administered the lower rating problems played before or even previously unplayed problems 

of similar lower rating. Using Figure 3 as an example, let us assume that the player is located at the 

node {𝑎, 𝑏} along the lerning path. If the player is administered the problem 𝑑 and underperforms 

then the player’s skill rating may decrease to match difficulty ratings of 𝑏 and 𝑐. Therefore, the next 

problem the player is administered can be either 𝑏 or 𝑐. If 𝑐 is selected then the player may transition 

into a node {𝑎, 𝑏, 𝑐} that is not reflected in Figure 3b. Thus, there can be more learning paths than 

the ones depicted in Figure 3b. The missing learning paths can be inferred from the ranked order by 

applying two following rules: 

 

Rule 1: Given a set 𝐺𝑅 of problems with a rank 𝑅 and a set 𝐺<𝑅 of problems of lower ranks 

(𝐺𝑅, 𝐺<𝑅 ⊆ 𝑄), a union of any subset of 𝐺𝑅with 𝐺<𝑅 is a node in a learning path. 

 

Rule 2:  Given a set 𝐺𝑅 of problems with a rank 𝑅 and a set 𝐺𝑅−1 of problems with rank 𝑅 − 1, a 

union of any subset of 𝐺𝑅 with any node 𝐾𝑅−1 containing at least one problem from 𝐺𝑅−1 is also a 

node in a learning path. 

 

In other words, Rule 1 states that in order to be able to solve any problem with some rank 

𝑅, the player should have solved or, at least, should be able to solve all lower ranking problems <𝑅. 

The gray-shaded nodes in Figure 4 are produced by applying Rule 1 to the ranked order in Figure 

3a. For example, a set {𝑏, 𝑐} of rank 2 problems has following subsets {𝑏}, {𝑐}, and {𝑏, 𝑐}. At rank 

1, a set {𝑎} has only itself as a subset (via union with an empty set ∅). Unions of every subset at rank 

2 with the subset at rank 1 result in following sets: {𝑎, 𝑏}, {𝑎, 𝑐}, and {𝑎, 𝑏, 𝑐}. Applying Rule 1 to 

every ranked set of problems and adding an empty set ∅ result in the gray nodes in Figure 4. 

Rule 1 essentially produces a branched, therefore more general, version of the linear 

learning path produced from the Guttman scale (Figure 2). Similarly, there is an assumption that 

every problem on the ranked order is played at least once and strictly in the order defined by the 

scale. This assumption allows putting problems of the same rank in the same nodes thereby 

producing learning paths missing in Figure 3b. Interestingly, the gray-shaded nodes form a Hasse 

diagram [3,5-6] of a finite partially ordered set. Importance of this property is discussed later in 

section 5 in connection with the Knowledge Space Theory [8,9]. 

Rule 2 is applied to the Hasse diagram produced by Rule 1. As an example, consider the 

sets {𝑑} and {𝑏, 𝑐} in Figure 3a. There is only one possible subset of {𝑑} which is itself. In the Hasse 

diagram composed of gray blocks, there are three nodes that contain problems from {𝑏, 𝑐}, but do 
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not contain the set {𝑑}: {𝑎, 𝑏}, {𝑎, 𝑐}, and {𝑎, 𝑏, 𝑐}. Unions of these nodes with the set {𝑑} produces 

following nodes: {𝑎, 𝑏, 𝑑}, {𝑎, 𝑐, 𝑑}, and {𝑎, 𝑏, 𝑐, 𝑑}. In this manner, Rule 2 can be recursively applied 

on the Hasse diagram until no new node is added. The new nodes produced by Rule 2 have white 

shading in Figure 4. More intuitively, Rule 2 merges the Hasse diagram with the tree diagram from 

Figure 3b. In the process of merging, a new Hasse diagram is generated with additional possible 

nodes and edges. In this particular example, six new nodes (marked with the dashed border in Figure 

4) are identified that were not present in both the Hasse and tree diagrams. These six new nodes and 

the Hasse diagram produced by Rule 1 account for the possibility that the player may be downgraded 

to lower rating problems. Overall, the diagram in Figure 4 shows possible learning paths assuming 

that (1) not all problems of the same rank may be administered to the player and (2) the player may 

return to the problems of the immediate lower rank due to underperformance in the problems of the 

higher rank. 

 

 
 

Figure 4. An expanded Hasse diagram resulting from applications of both Rule 1 and Rule 2.  

 

The Hasse diagram can be used for more complex analysis of how different learning paths may 

result in different learning experiences. For example, the learning paths in Figure 3b can be 

considered optimal because it will result in a continuously increasing skill rating until the ceiling is 

reached. On the other hand, additional learning paths in the expanded Hasse diagram can be 

considered suboptimal because they assume one or more downward trends in the player’s skill rating. 

If many players are in suboptimal learning paths then the problem set may not be designed well and 

need refinement. 

5. A case study based on empirical data 

5.1 Exploring potential issues and properties of a problem set  

In this section, we demonstrate how a ranked order and a Hasse diagram can be used for exploring 

the problem set in a serious game from Math Garden [7]. As an example, we used the Number game 

for training basic arithmetic skills as well as general problem-solving skills.  

Given a set 𝑆𝑁 of numbers and a set 𝑆𝑂 of arithmetic operators, a player has to make a target 

number 𝑇. Operators in 𝑆𝑂 can be reused, but each number in 𝑆𝑁 has to be used only once. Size of 

𝑆𝑁 (|𝑆𝑁|) can range from 2 to 5, and 𝑆𝑂 can be an any combination of following operators: +, −, ×, 

/, and exponent ^. An example is shown in Figure 5. The player is required to reach the target 

number 2 using only addition and/or subtraction involving three other numbers 1, 5, and 6. Possible 

solutions are 6-5+1, 6+1-5, and 6-(5-1). Some problems can be extremely challenging from a 

computational perspective. For example, the subset of problems where 𝑆𝑂 = (+, −) are NP-

complete meaning that even computers have difficulty solving these problems by exhaustive search 

over the solution space [30-31]. However, human players are surprisingly good at solving such 

problems [32]. This success is predicated on an ability to discover heuristic strategies for efficiently 

exploring a vast solution space. Later, we will provide an example of such strategy. 
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From the player’s perspective, there are multiple factors that may define problem difficulty. The 

obvious two factors are inherent difficulties of operators (e.g., addition is easier than multiplication) 

and numbers (e.g., 10 × 10 is easier than 7 × 8). The less obvious factor is player’s preference for 

one operator over another (e.g., trying a solution with addition before trying a solution with 

multiplication). A similar preference may exist for numbers. Finally, these preferences may vary 

depending on the problem format. Overall, the Number game promotes not only development of 

player's arithmetic skills but also complex problem-solving skills necessary to find a correct solution 

in time. 

 

 
 

Figure 5. A screenshot from Math Garden showing an instance of the Number game.  

 

All data were extracted from Math Garden in January 2015. In this example, we will limit 

our scope to a subset of problems where the size of 𝑆𝑁 is two (|𝑆𝑁| = 2). To ensure that difficulty 

ratings are stable, we used problems that were played at least 30 times. For the purpose of simplicity, 

we also removed problems where 𝑆𝑁 contained at least one negative number (e.g., 𝑆𝑁 = (1, −2)). 

In total, there were 230 problems classified into seven categories summarized in Table 1. Each 

category included problems with the same solution pattern. For example, the category 𝑁2 + 𝑁1 

consists of 22 problems where a solution is an addition of two numbers. An average difficulty rating 

of problems in this category is 3.39 with a standard deviation of 1.00. Given a set 𝑆𝑁 = (𝑁1, 𝑁2), 

𝑁2 represents the bigger number of two (𝑁2 ≥ 𝑁1). The ID column contains alphabetic letters 

unique to each category. These letters are used to represent each category in the ranked order and 

the Hasse diagram. 

 

Table 1. Categories of problems. 

Category Number of problems Rating mean Rating SD ID 

N2 + N1 22 3.39 1.00 a 

N2 × N1 54 24.18 5.07 b 

N2 - N1 71 24.31 0.86 c 

N2 / N1 44 32.19 0.44 d 

N1 / N2 9 35.61 0.21 e 

N2 ^ N1 25 37.05 1.53 f 

N1 ^ N2 5 45.17 0.28 g 

 

Figure 6a shows the ranked order and the expanded Hasse diagram produced with threshold 

𝑇ℎ = 0.1. This means that the problems of the same rank do not differ in difficulty for more than 

10%, and problems of an immediate higher rank are difficult for more than 10% than problems of 

the rank below. Problems with addition are the easiest as can be expected. After addition problems, 

the player may progress to either multiplication or subtraction problems that have similar difficulty 

ratings. Next, the division of a bigger number by a smaller number is easier than the division of the 

smaller number by the bigger number. Based on this pattern, we can safely assume that the player 

needs to learn division without remainder before learning division with remainder. Exponentiation 

is the most difficult operation. Similar to division, exponentiation problems can be divided into two 

groups based on the size of the exponents. Figure 6b shows the extended Hasse diagram with learning 

http://journal.seriousgamessociety.org/


Nyamsuren, E. et al., Problem Space Analysis in Adaptive Serious Games pag. 13 

 
International Journal of Serious Games Volume 5, Issue 1, March 2018 

ISSN: 2384-8766 http://dx.doi.org/10.17083/ijsg.v5i1.219 

paths inferred from the ranked order in Figure 6a. The shaded nodes are generated with Rule 1. 

Remaining nodes are derived by applying Rule 2. There are ten potential learning paths formed by 

16 learning states the player may occupy. 

 

 
 

Figure 6. (a) A ranked order (𝑇ℎ = 0.1) of seven categories of problems from the Number game. 

(b) A Hasse diagram of possible learning paths. 

 

This analysis reveals multiple issues and features in the problem set. First, Table 1 reveals 

three big difficulty rating gaps after 𝑁2 + 𝑁1, 𝑁2 − 𝑁1, and 𝑁2^𝑁1. These gaps may present 

players with sudden and undesirable spikes in problem difficulty. The potential negative impact can 

be explored using the Hasse diagram in Figure 6b. For example, transitions of players from the node 

{𝑎} to either nodes {𝑎, 𝑏} or {𝑎, 𝑐} maybe be slow. For a smoother learning experience, the 

intermediate problem can be added in these gaps. For example, problems with additions of large 

numbers or additions of more than two numbers can be added to smoothen the transition from the 

addition problems to the multiplication problems. Next, problems for multiplication and subtraction 

are competing for selection. This is rather undesirable since the player should train both 

multiplication and subtraction skills in equal measure. One solution is too artificially increase the 

difficulty of either multiplication or subtraction problems so that a linear order is formed. 

Alternatively, both operators can be included in the same set of problems. In the latter solution, a 

potential effect of interaction on the difficulty rating should be also considered. Third, the ranked 

order clearly reveals that the division and exponentiation problems should be categorized based on 

both operators and operands. A teacher or game developer should reflect these two factors defining 

difficulties of arithmetic problems in the design of the problem set. Finally, the ranked order rather 

nicely reflects commonly perceived difficulty of arithmetic operations. 

 

5.2 Exploring a problem set to analyze players’ learning strategies  

In this example, a ranked order of problems is used to explore potential learning strategies players 

may use to solve more complex problems in the Number game. We investigate problems where 

players need to exhibit arithmetic prowess as well as deploy a sophisticated strategy to find a 

solution. A previous study [32] proposed that players are employing a forward reasoning strategy. 

The strategy involves only numbers in the set 𝑆𝑁 and not the target number 𝑇. Since players can 

operate on only two numbers at the time, there is a need for a selection criterion for numbers to be 

used with the first operation. It was discovered that larger numbers are preferred to smaller ones. For 

example, if a solution for a problem involves the addition of three numbers (e.g., 𝑆𝑁 = {2,5,10},
𝑇 = 17) then the most likely solution is a summation of the two biggest numbers and then the 

addition of the smallest number: (e.g., (10 + 5) + 2). In the previous study, we referred to it as a 

greedy selection criterion. We expect the ranked order to reflect the forward reasoning strategy. 

Problems that are most compatible with the forward reasoning strategy should be ranked lower than 

the problems that are less compatible with the strategy. Additionally, we expect an interaction 

between the difficulty of arithmetic operations and compatibility with the forward reasoning strategy. 

The nature of such interaction is difficult to predict. However, we expect the ranked order to provide 

some insight. 
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Figure 7. A ranked order (𝑇ℎ = 0.1) of 41 categories of problems with |𝑆𝑁| = 3. Numbers on the 

right indicate rank. Green boxes are problems that have solutions compatible with the forward 

reasoning strategy and the greedy selection criterion. 

 

All data were extracted from Math Garden in January 2015. We again use a subset of 

problems where the size of 𝑆𝑁 is three (|𝑆𝑁| = 3) and 𝑆𝑂 contains four operators +, −, ×, and /. We 

used problems that were played 30 or more times. For simplicity, we removed problems where 𝑆𝑁 

contained at least one negative number, or where a target number had a fraction. Numbers in a set 

𝑆𝑁 are labeled as 𝑆𝑁 = {𝑁1, 𝑁2, 𝑁3} where 𝑁3 ≥ 𝑁2 ≥ 𝑁1. As in the previous example, the 

problems with the same solution pattern were assigned into the same category. A total of 509 

problems formed 41 categories. The ranked order was created based on these categories. In the 

remainder of this section, we refer to categories as problems. The threshold 𝑇ℎ was set to 0.1. 

The resulting ranked order is shown in Figure 7. Interesting details can be observed by focusing on 

particular parts of the graph. Problems that have solutions compatible with the forward reasoning 

strategy and the greedy selection criterion are shaded in green. As we expected, the rank-order of 

problems reflects their compatibilities with the selection criterion. Lower ranks contain problems 

that are compatible with the greedy criterion while higher ranks mostly contain problems that are not 

compatible with the criterion. 

The ranked order also reflects difficulties of operators. Based on the first six lower ranks, we 

can deduce addition, subtraction, multiplication, and division in an increasing order of difficulty. 

This order largely matches the one observed in Figure 6a. We can further investigate how various 

combinations of different operations affect the difficulty of problems. For example, an interesting 

asymmetry is observed between problems in the second and third ranks. The problem 𝑁3 + 𝑁2 −
𝑁1 is a prerequisite for problems 𝑁3 − 𝑁2 − 𝑁1 and 𝑁3 − 𝑁2 + 𝑁1. It makes sense that the 

problem with two subtractions is more difficult than the problem with one subtraction. However, the 

problem 𝑁3 − 𝑁2 + 𝑁1 has the same rank as the problem 𝑁3 − 𝑁2 − 𝑁1 despite having the same 

combination of operations as in 𝑁3 + 𝑁2 − 𝑁1. This asymmetry suggests that the order of 

operations also defines difficulty of problems and, therefore, the structure of the graph. Players not 

only find addition to be simpler than subtraction but also may prefer to choose addition over 

subtraction as a possible solution for a problem. 

http://journal.seriousgamessociety.org/


Nyamsuren, E. et al., Problem Space Analysis in Adaptive Serious Games pag. 15 

 
International Journal of Serious Games Volume 5, Issue 1, March 2018 

ISSN: 2384-8766 http://dx.doi.org/10.17083/ijsg.v5i1.219 

6. Discussion 

This work proposes multiple instruments for analyzing a problem set in an adaptive serious game. 

The Guttman scale [4] can be used to analyze the distribution of problems along the linear scale of 

difficulty rating. The ranked order introduces a notion of similarity to identify problems that may 

compete for selection. More importantly, the ranked order enables inference of possible learning 

paths depicted in a Hasse diagram [3,5-6]. The Hasse diagram provides a clear overview of the 

learning paths as well as learning states that the player may progress through. These three 

instruments offer analysis of the problem set at various levels of complexity and granularity. Yet, 

graph-based nature of these instruments allows visualization that is intuitive and easy to read for 

teachers and game developers. 

As discussed earlier, Knowledge Space Theory [8-9] is an alternative approach to 

assessment, adaptation, and exploring the problem space. Knowledge structures in KST can also be 

visualized as Hasse diagrams reflecting dependencies among problems. In Figure 4, the shaded nodes 

can be seen as a knowledge structure if we assume that nodes are knowledge states and edges 

represent prerequisite dependencies. On the one hand, KST is a well-established and validated 

approach. On the other hand, knowledge structures need to be built before its use in serious games 

[33]. This is an effortful process requiring either domain experts [15-17] or complex analysis of 

response patterns [18-20]. In contrast, our methodology is automatic, computationally inexpensive, 

and can construct graph representations in real-time based on up-to-date data. While accuracies of 

the three graph representations depend on the accuracies of the difficulty ratings, CAP can quickly 

converge on reliable difficulty ratings given a sufficient number of observations [2]. 

Furthermore, our methodology promotes explorative analysis of the problems space. This is in 

contrast to KST where the knowledge structure often remains static once it is built. However, the 

knowledge structure may not accurately reflect the learning domain. To address this issue, [33] 

propose a method to automatically refine an existing knowledge structure. However, the method 

does not address issues caused by an inaccurate or incomplete problem set. With our methodology, 

teachers and developers can continue to analyze and improve the problem set even after the game’s 

deployment.  

7. Future works 

A method for inferring individual player’s learning state in a Hasse diagram can be useful for 

multiple reasons. Recent surveys [34-35]  indicate that serious games are often used by teachers for 

a formative assessment to identify a need for an intervention. The Hasse diagram can be invaluable 

in identifying player’s current progress (at what node the student is), potential barriers to learning 

(what was player’s performance in current and preceding nodes of the learning path?), and type of 

intervention necessary (what are the learning requirements for the higher-level nodes?). 

Additionally, the analysis of learning states can be used for identifying the most likely learning paths 

in the problem set. The analysis of prevalent learning paths can be useful for further optimization of 

the problem set and identification of outlier players who deviate from these paths. Unfortunately, 

existing methods for inferring player’s learning state [36-38] cannot be reused directly. First, CAP 

assesses the player at three different levels. The challenge is to choose among these three types of 

measures the most suitable one (or a combination of) for inferring player’s learning state. Second, 

the fact that CAP modulates the order in which the problems are administered needs to be taken into 

account. 

The nature of relations among problems needs to be explored more. In this study, we relate 

problems by difficulty only. However, multiple factors may contribute to problem difficulty. One 

factor is a cognitive demand necessary to complete the problem. Another factor, we are particularly 

interested in, is prerequisite dependencies defined by skills necessary for solving the problems. 

Given two problems 𝑖 and 𝑗 from a domain 𝑄 (𝑖, 𝑗 ∈ 𝑄), 𝑖 is a prerequisite for 𝑗 (𝑗 ⪰ 𝑖) if we can infer 

the player’s success in 𝑖 from the player’s success in 𝑗. In other words, solving 𝑗 requires the skills 

(and more) required for solving 𝑖. Knowledge Space Theory [8-9] offers multiple methods for 

response pattern analysis to infer such prerequisite dependencies [18-20]. For example, [39] 

introduced the k-state procedure, a data-driven approach for building knowledge structures based on 

the k-modes clustering used in the area of data-mining. This clustering approach can be potentially 

used on big data offered by the Math Garden to explore prerequisite dependencies. 
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To apply the methods from KST to our approach, the learning states and Hasse diagrams should 

satisfy constraints for valid knowledge states, structures, and spaces [9]. For example, transforming 

a knowledge structure into a knowledge space requires satisfaction of constraints that apply to 

individual states as well as the overall topography of the structure. While being challenging, such 

alignment with KST can bring other benefits. It can widen our methodology’s relevance and 

applicability outside of CAP-enabled systems. Furthermore, it will contribute to ongoing lines of 

research on the automatic construction of knowledge structures [33] and on integrating latent trait 

theory [19] into KST.  

8. Conclusion  

In this work, we proposed a methodology and three corresponding instruments involving the 

Guttman scale, a ranked order, and a Hasse diagram to explore problem set in adaptive serious games 

integrating CAP system. The proposed methodology is first to use a difficulty measure to explore a 

problem space and well-suited for serious games that emphasize both knowledge acquisition and 

consolidation via practice. Different instruments enable analyses of the problem set at different levels 

of complexity. The methodology can be used throughout the game’s lifetime either to improve the 

problem set or to gain insight into players’ learning tendencies such as learning paths or solution 

strategies. The effectiveness of the method was demonstrated based on two use cases involving real 

data from an online serious gaming platform Math Garden. The methodology is accessible to 

teachers and game developers without extensive technical knowledge. 

TwoA [26] is a portable library implementing the CAP algorithm for offline use in a smaller and 

isolated classroom environment. It can be integrated with popular game development platforms, such 

as Unity3D, to create adaptive games. The motivation is to offer more control to teachers and game 

developers in designing serious games that meet specific curriculum requirements while still 

leveraging from difficulty adaptation offered by CAP. TwoA also offers API for generating a ranked 

order and a Hasse diagram from a set of problems. The generated structures can be used in-game or 

stored in external files in an XML format. TwoA is available at 

https://github.com/rageappliedgame/HatAsset under an open-source license. 
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