Full-body Movement in Numerical Trainings: A Pilot Study with an Interactive Whiteboard

  • Ursula Fischer Knowledge Media Research Center Tuebingen
  • Korbinian Moeller Leibniz-Institut fuer Wissensmedien, Tuebingen
  • Stefan Huber Leibniz-Institut fuer Wissensmedien, Tuebingen
  • Ulrike Cress
  • Hans-Christoph Nuerk University of Tuebingen,
Keywords: elementary education, numerical processing, spatial-numerical association, embodied cognition, media in education

Abstract

In this pilot study, we introduce an effective spatial-numerical training to improve children’s arithmetic abilities. We designed this training based on previous successful trainings of spatial-numerical associations (such as number line estimation) and introduced a full-body response movement. Children responded to a number line estimation task presented on an interactive whiteboard by moving their whole body to the left or right. In a pilot study with a small group of children (total sample size N = 27), this experimental training was compared to two control trainings, one training the same task without the full-body movement and one training a different task with full-body movement. The experimental training led to significant improvement in all dependent measures and was most effective in enhancing performance in a spatial-numerical task. Furthermore, full-body movement helped children maintain their performance level in multi-digit addition. We conclude that full-body movement can enhance the efficiency of numerical trainings, which could also be successfully utilized in serious games and incorporated into the classroom.

References

[1] Bynner, J., Parsons, S., Does Numeracy Matter? Evidence from the National Child Development Study on the impact of poor numeracy on adult life, London: The Basic Skills Agency, 1997.
[2] Parsons, S., Bynner, J., Does Numeracy Matter More?, London: National Research and Development Centre for Adult Literacy and Numeracy, 2005.
[3] Bynner, J., Parsons, S., New Light on Literacy and Numeracy, NRDC National Research and Development Centre for adult literacy and numeracy, 2006.
[4] Gross, J., Hudson, C., Price, D., The Long Term Costs of Numeracy Difficulties, London: Every Child a Chance Trust and KPMG, 2009.
[5] Butterworth, B., Varma, S., Laurillard, D., Dyscalculia: from brain to education., Science, Vol. 332, Nr. 6033, 1049–1053, 2011. doi:10.1126/science.1201536
[6] Wilson, A.J., Revkin, S.K., Cohen, D., Cohen, L., Dehaene, S., An open trial assessment of “The Number Race”, an adaptive computer game for remediation of dyscalculia., Behavioral and brain functions : BBF, Vol. 2, 20, 2006. doi:10.1186/1744-9081-2-20
[7] Räsänen, P., Salminen, J., Wilson, A.J., Aunio, P., Dehaene, S., Computer-assisted intervention for children with low numeracy skills, Cognitive development, Vol. 24, 450–472, 2009. doi:10.1016/j.cogdev.2009.09.003
[8] Kroesbergen, E.H., Van Luit, J.E.H.H., Mathematics Interventions for Children with Special Educational Needs: A Meta-Analysis, Remedial and Special Education, Vol. 24, Nr. 2, 97–114, 2003. doi:10.1177/07419325030240020501
[9] Xin, Y.P., Jitendra, A.K., The effects of instruction in solving mathematical word problems for students with learning problems: A meta-analysis, The Journal of Special Education, Vol. 32, Nr. 4, 207–225, 1999. doi:10.1177/002246699903200402
[10] Booth, J.L., Siegler, R.S., Numerical magnitude representations influence arithmetic learning, Child Development, Vol. 79, Nr. 4, 1016–1031, 2008. doi:10.1111/j.1467-8624.2008.01173.x
[11] Holloway, I.D., Ansari, D., Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement, Journal of Experimental Child Psychology, 2009. doi:10.1016/j.jecp.2008.04.001
[12] Moeller, K., Pixner, S., Zuber, J., Kaufmann, L., Nuerk, H.-C., Early place-value understanding as a precursor for later arithmetic performance - A longitudinal study on numerical development, Research in Developmental Disabilities, Vol. 32, Nr. 5, 1837–1851, 2011. doi:10.1016/j.ridd.2011.03.012
[13] Krajewski, K., Nieding, G., Schneider, W., Kurz- und langfristige Effekte mathematischer Frühförderung im Kindergarten durch das Programm „Mengen, zählen, Zahlen”, Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, Vol. 40, Nr. 3, 135–146, 2008. doi:10.1026/0049-8637.40.3.135
[14] Ramani, G.B., Siegler, R.S., Reducing the gap in numerical knowledge between low- and middle-income preschoolers, Journal of Applied Developmental Psychology, Vol. 32, Nr. 3, 146–159, 2011. doi:10.1016/j.appdev.2011.02.005
[15] Fischer, U., Moeller, K., Bientzle, M., Cress, U., Nuerk, H.-C., Sensori-motor spatial training of number magnitude representation, Psychonomic bulletin & review, Vol. 18, Nr. 1, 177–183, 2011. doi:10.3758/s13423-010-0031-3
[16] Link, T., Moeller, K., Huber, S., Fischer, U., Nuerk, H.-C., Walk the number line – An embodied training of numerical concepts, Trends in Neuroscience and Education, Vol. 2, Nr. 2, 74–84, 2013. doi:10.1016/j.tine.2013.06.005
[17] Dehaene, S., Bossini, S., Giraux, P., The mental representation of parity and number magnitude, Journal of Experimental Psychology: General, Vol. 122, Nr. 3, 371–396, 1993. doi:10.1037/0096-3445.122.3.371
[18] Opfer, J.E., Furlong, E.E., How numbers bias preschoolers’ spatial search, Journal of Cross-Cultural Psychology, Vol. 42, Nr. 4, 682–695, 2011. doi:10.1177/0022022111406098
[19] Siegler, R.R.S., Opfer, J.J.E., The development of numerical estimation: Evidence for multiple representations of numerical quantity, Psychological science, Vol. 14, Nr. 3, 237–243, 2003. doi:10.1111/1467-9280.02438
[20] Barth, H.C., Paladino, A.M., The development of numerical estimation: Evidence against a representational shift, Developmental science, Vol. 14, Nr. 1, 125–135, 2011. doi:10.1111/j.1467-7687.2010.00962.x
[21] Link, T., Huber, S., Nuerk, H.-C., Moeller, K., Unbounding the mental number line - new evidence on children’s spatial representation of numbers, Frontiers in Psychology, Vol. 4:1021, 2014. doi:10.3389/fpsyg.2013.01021
[22] Link, T., Nuerk, H.-C., Moeller, K., On the relation between the mental number line and arithmetic competencies, The quarterly journal of experimental psychology, Vol. 67, Nr. 8, 1597–1613, 2014. doi:10.1080/17470218.2014.892517
[23] Moeller, K., Fischer, U., Nuerk, H.-C., Cress, U., Computers in mathematics education – Training the mental number line, Computers in Human Behavior, Vol. 48, 597–607, 2015. doi:10.1016/j.chb.2015.01.048
[24] Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., et al., Mental number line training in children with developmental dyscalculia, NeuroImage, Vol. 57, Nr. 3, 782–95, 2011. doi:10.1016/j.neuroimage.2011.01.070
[25] Käser, T., Baschera, G., Kohn, J., Kucian, K., Richtmann, V., Grond, U., et al., Design and evaluation of the computer-based training program Calcularis for enhancing numerical cognition, Frontiers in psychology, Vol. 4, 489, 2013. doi:10.3389/fpsyg.2013.00489
[26] Fischer, U., Link, T., Cress, U., Nuerk, H.-C., Moeller, K., Math with the dance mat: On the benefits of embodied numerical training approaches, In: Lee V, editor, Learning Technologies and the Body: Integration and Implementation in Formal and Informal Learning Environments, New York: Routledge, p. 149–163, 2015.
[27] Moeller, K., Fischer, U., Link, T., Wasner, M., Huber, S., Cress, U., et al., Learning and development of embodied numerosity., Cognitive processing, Vol. 13, Nr. Suppl 1, S271–S274, 2012. doi:10.1007/s10339-012-0457-9
[28] Butterworth, B., The Mathematical Brain, London: Macmillan, 1999.
[29] Fuson, K.C., Children’s counting and concepts of number, New York: Springer, 1988.
[30] Domahs, F., Moeller, K., Huber, S., Willmes, K., Nuerk, H.-C., Embodied numerosity: Implicit hand-based representations influence symbolic number processing across cultures, Cognition, Vol. 116, Nr. 2, 251–266, 2010. doi:10.1016/j.cognition.2010.05.007
[31] Fischer, M.H., Finger counting habits modulate spatial-numerical associations, Cortex, Vol. 44, Nr. 4, 386–392, 2008. doi:10.1016/j.cortex.2007.08.004
[32] Wilson, M., Six views of embodied cognition., Psychonomic bulletin & review, Vol. 9, Nr. 4, 625–636, 2002. doi:10.3758/BF03196322
[33] Shaki, S., Fischer, M.H., Random walks on the mental number line, Experimental brain research, Vol. 232, Nr. 1, 43–49, 2014. doi:10.1007/s00221-013-3718-7
[34] Giannakos, M.N., Enjoy and learn with educational games: Examining factors affecting learning performance, Computers and Education, Vol. 68, 429–439, 2013. doi:10.1016/j.compedu.2013.06.005
[35] Resnick, L., Resnick, D., Assessing the thinking curriculum: New tools for educational reform, In: Gilford BR, O’Connor MC, editors, Changing assessments, Boston: Kluwer Academic, p. 37–75, 1992.
[36] Erhel, S., Jamet, E., Digital game-based learning: Impact of instructions and feedback on motivation and learning effectiveness, Computers and Education, Vol. 67, 156–167, 2013. doi:10.1016/j.compedu.2013.02.019
[37] Corbalan, G., Kester, L., van Merriënboer, J.J.G., Dynamic task selection: Effects of feedback and learner control on efficiency and motivation, Learning and Instruction, Vol. 19, Nr. 6, 455–465, 2009. doi:10.1016/j.learninstruc.2008.07.002
[38] Abelson, R.P., Prentice, D.A., Contrast tests of interaction hypothesis, Psychological Methods, Vol. 2, Nr. 4, 315–328, 1997. doi:10.1037/1082-989X.2.4.315
[39] Niedenthal, P.M., Brauer, M., Robin, L., Innes-Ker, A.H., Adult attachment and the perception of facial expression of emotion, Journal of personality and social psychology, Vol. 82, Nr. 3, 419–433, 2002. doi:10.1037//0022-3514.82.3.419
[40] Torff, B., Tirotta, R., Interactive whiteboards produce small gains in elementary students’ self-reported motivation in mathematics, Computers and Education, Vol. 54, Nr. 2, 379–383, 2010. doi:10.1016/j.compedu.2009.08.019
[41] Jang, S.J., Integrating the interactive whiteboard and peer coaching to develop the TPACK of secondary science teachers, Computers and Education, Vol. 55, Nr. 4, 1744–1751, 2010. doi:10.1016/j.compedu.2010.07.020
[42] Kiili, K., Perttula, P.T.A., Exerbraining for Schools: Combining Body and Brain Training, Procedia Computer Science, Vol. 15, Nr. 0, 163–173, 2012. doi:10.1016/j.procs.2012.10.068
[43] Dehaene, S., Cohen, L., Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic, Cortex, Vol. 33, Nr. 2, 219–250, 1997. doi:10.1016/S0010-9452(08)70002-9
[44] Susi, T., Johannesson, M., Backlund, P., Serious Games – An Overview, University of Skövde, Sweden, 2007
[45] Kiili, K., De Freitas, S., Arnab, S., Lainema, T., The design principles for flow experience in educational games, Procedia Computer Science, Vol. 15, Nr. DECEMBER, 78–91, 2012. doi:10.1016/j.procs.2012.10.060
[46] Corti, K., Games-based Learning; a serious business application, PIXELearning Limited. 2006.
[47] Kiili, K., Devlin, K., Perttula, T., Tuomi, P., Lindstedt, A., Using video games to combine learning and assessment in mathematics education. International Journal of Serious Games, Vol. 2, Nr. 4, December 2015.
Published
2015-12-07
How to Cite
Fischer, U., Moeller, K., Huber, S., Cress, U., & Nuerk, H.-C. (2015). Full-body Movement in Numerical Trainings: A Pilot Study with an Interactive Whiteboard. International Journal of Serious Games, 2(4). https://doi.org/10.17083/ijsg.v2i4.93
Section
Special Issue on Digital Games for Learning Mathematics

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.