
pag. 59

International Journal of Serious Games Volume 4, Issue 3, September 2017
ISSN: 2384-8766 http://dx.doi.org/10.17083/ijsg.v4i3.171

The RAGE Game Software Components Repository
Supporting Applied Game Development

A. Georgiev1, A. Grigorov1,6, B. Bontchev1, P. Boytchev1, K. Stefanov1,

W. Westera2, E. Nyamsuren2, K. Bahreini2, R. Prada3, P. Hollins4, P. Moreno5
1 corresponding Sofia University "St. Kliment Ohridski", Faculty of Mathematics and

Informatics, Bulgaria, krassen@fmi.uni-sofia.bg,
{atanas,alexander.grigorov,bbontchev,boytchev,krassen}@fmi.uni-sofia.bg

2 Open University of the Netherlands
{wim.westera,enkhbold.nyamsuren,kiavash.bahreini}@ou.nl

3 University of Lisbon, Portugal
rui.prada@tecnico.ulisboa.pt
4 The University of Bolton, UK

pah1@bolton.ac.uk
5 Universidad Complutense de Madrid, Spain

pablom@fdi.ucm.es
6 Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Bulgaria

grigorov@math.bas.bg

Abstract
This paper presents the architecture of the RAGE repository, a unique and dedicated
infrastructure that provides access to a wide variety of advanced technology
components for applied game development. The RAGE project, which is the principal
Horizon2020 research and innovation project in applied gaming, will develop
software components (RAGE software assets) that are reusable across a variety of
game engines, game platforms and programming languages. The RAGE repository
provides storage space for these assets and associated artefacts and is designed as
an asset life-cycle management system for defining, publishing, updating, searching
and packaging for distribution of the assets. The repository will be embedded in a
social platform for asset developers and other stakeholders. A dedicated Asset
Repository Manager provides the main functionality of the repository and its
integration with other systems. Additional Tools supporting the Asset Manager are
also presented and discussed. When the RAGE repository is fully operational, applied
game developers will be able to enhance the quality of their games through the
application of selected advanced game software assets. By making available the
RAGE repository system and software assets the RAGE project’s aim is to stimulate
the development and uptake of the Applied Games Industry IN Europe.

Keywords: software assets, serious games, asset repository, taxonomy tools, metadata
editor, reuse.

1. Introduction

Applied gaming is highlighted as one of the main priorities in Horizon2020, the Research and
Innovation Programme of the European Commission. Policy makers of the European Commission
envision a flourishing applied games industry that helps to address a variety of societal challenges
in education, health, social cohesion and citizenship, and equally one that stimulates the creation of
jobs in the creative industry sector.

Although applied or serious games have been successfully employed in education and training
settings across a wide and varied range of application domains, seizing the full potential of applied
games has been challenging. In contrast, the leisure games industry is an established industry
dominated by large international hardware vendors (e.g. Sony, Microsoft and Nintendo) and large
publishers and retailers. Conversely, the applied game industry is fragmented across a plethora of
small independent businesses with limited interconnectedness and knowledge exchange [1-2].

pag. 60

International Journal of Serious Games Volume 4, Issue 3, October 2017
ISSN: 2384-8766 http://dx.doi.org/10.17083/ijsg.v4i3.171

The RAGE project [3] aims to stimulate the applied game industry by making available a set of
advanced reusable game technology components (software assets) that game studios can easily
integrate in their game development projects. Applied game studios would benefit from using state-
of-the-art technologies, while incorporating complex pedagogic technical functionality would
become easier and quicker, and the cost of development would be reduced. The software assets
cover a variety of functionalities including game analytics, emotion recognition, assessment,
personalised learning, game balancing and player-centric adaptation, procedural animation,
language technologies, interactive storytelling, and social gamification.

While the main research goal of the RAGE project is to support the applied game industry
through making available a large set of reusable, advanced software components (applied gaming
assets), this paper focuses on the design of the repository infrastructure that is required to support
the processes of development, reuse and sharing of applied gaming assets. This paper presents the
asset repository architecture and the associated asset development methodology. We first present
the related work efforts, discuss our approach (research method), describe the software asset
concept, provide details of the design and implementation of the back-end repository system
architecture and corresponding front-end tools, and we conclude with a brief description of our
initial experiments with the infrastructure, analysis and identification of further development and
research efforts.

2. Related work

Asset-based software development relies on reusing well documented and cohesive software
artefacts and, therefore, it is inconceivable without a platform for storing and accessing assets. An
asset repository as a software tool is defined by Ackerman and colleagues [4] for storing and
retrieving reusable assets and managing asset access control for asset producers and consumers,
according to the phases of the asset life cycle. They introduce the IBM Rational Asset Manager
(RAS) repository, which handles tasks and activities of software asset producer, consumer and
subscriber roles, while offering reduced production costs and improved software quality. In order to
facilitate cross-project reuse of assets, the RAS model provides monitoring of asset categorization
and usage together with multi-platform compliance management. RAS is currently a standard
supported by Open Management Group (OMG).

Another example for a RAS-based asset repository is the Atego Asset Library [5], which is a
scalable Web-based repository for reusable software engineering artefacts. It is based on OMG RAS
and integrates Unified Modelling Language (UML) and Systems Modelling Language (SysML) in
order to facilitate asset reuse at design time. Currently, the tool is supported as PTC Integrity Asset
Library1 and, besides the publishing, finding and reuse of assets, provides services as interest registry
and notification, automatic file interrogation, traceable links and reuse metric dashboard.

Extensions of the OMG RAS have been proposed for designing open source Web-based asset
repositories providing advanced classification, search and utilization of reusable software assets of
various types. The OpenCom asset repository was created as a supporting tool of Shanghai
Component Library [6] based on an extension of OMG RAS profile aiming at collaborative creation
of knowledge by web users. The Lavoi free source asset repository [7] was developed based on an
extension of the component profile of OMG RAS broadening the categories about classification,
solution, usage and related assets.

In the games domain various existing platforms are promoting reusability in both serious games
and leisure games. The Unity Asset Store (https://www.assetstore.unity3d.com/) is an example of a
successful online market place for game objects. Most of the objects are media objects (e.g. terrains,
audio, buildings, weapons), but an increasing number of software modules (e.g. analytics, cloud
backend, game AI) are becoming available. Unfortunately, most of the software objects can only be
reused in the Unity game engine. Various other online platforms offer reusable game objects, for
instance the Guru asset store (https://en.tgcstore.net/), Game Salads (http://gshelper.com/),

1 http://www.ptc.com/model-based-systems-engineering/integrity-modeler/asset-library

Georgiev, A. et al., The RAGE Game Software Components Repository Supporting Applied Game Development pag. 61

International Journal of Serious Games Volume 4, Issue 3, September 2017
ISSN: 2384-8766 http://dx.doi.org/10.17083/ijsg.v4i3.171

GameDev Market (https://www.gamedevmarket.net/), Unreal Marketplace
(https://www.unrealengine.com/marketplace), and Construct 2 (https://www.scirra.com/store), but
similarly their main focus is on user-interface objects and templates, while scarce software
components will only run on one preferred game engine. The Intel® XDK HTML5 Cross-platform
Development Tool [8] offers an asset manager for game development in conjunction with several
game platforms, be it that its focus is not on software assets, but on media assets, that is, audio-
visual game objects to be included in a project. In RAGE the focus is on software assets, reusable
components adding specific (pedagogic) functionality for applied game development.

A similar attempt related to using a digital repository of metadata resources for education,
combined with a portal for the respective community of practices build around the repository, is
described in [9]. Other approaches to endowing digital libraries with adaptability capabilities in
order to scaffold and enhance end user experience are presented in [10]. Similar attempts inside the
GALA Network of Excellence are the Service-Oriented Architecture (SOA) framework for applied
games [11] and the repository for exchange of game resources [12].

Although RAS is a complete architecture, it was not immediately applicable to the RAGE
project. The main distinctions being: (1) RAS is too general and some of its elements were not
suitable for RAGE assets, additionally, RAGE required data which were not present in RAS; (2)
RAGE used a different interpretation of some terms, and this might lead to confusion if other
standards were being adopted as-they-are. For example, within RAGE, the asset is strictly a software
asset with some predefined structure, while in other models assets could be an image or a voice
recording.

The RAGE project, however, is unique at proposing a specific software architecture. The idea
about the use of the metadata schema as an input for generating the metadata editor, the configuration
editor and the validator, is unique [16]. Additionally the metadata schema is used in order to index
all asset metadata inside the repository. This means that changing the metadata schema will not
affect any one of the software programs that constitute the repository, only their interface part
defined by the schema.
The RAGE component-based software architecture preserves the portability of assets and that
supports data interoperability between the assets [13]. The concept underpinning interoperable
software components as reusable game elements with specific objective and functionality is also
unique. The approach captures more detail than RAS architecture and is more focused and related to
the domain of applied games. This results in a unique architecture, more detailed, but conversely
simpler and easier to be deploy in comparison to RAS architecture. This results in a more efficient
and user friendly architecture.

Moreover, it transcends the SOA framework by allowing client-side assets that are directly
integrated in the game engine’ Thereby manifest limitations of SOA can be bypassed, such as the
requirement of constant online connectivity, diminished flexibility such as customisation and
configuration of services by service consumers, reduced system performance due to additional
overheads associated with SOA and network calls. In contrast with software components that are
available for proprietary game engines, RAGE-compliant components are interoperable and
designed for porting to multiple game engines and platforms. The usage of the Asset manager in run
time is also unique and provides more flexibility and efficiency for implementing reusable game
assets in real game settings.

3. RAGE Software Assets

A RAGE asset includes a self-contained software component related to computer games, intended
to be reused and or repurposed across different game platforms. Its formal definition is compliant
with the asset definition of the W3C ADMS Working Group [14], which refers to abstract entities
that reflect some “intellectual content independent of their physical embodiments”. In principle, not
all assets are required to include software, however this paper focusses on software assets. In addition
to the software component, the RAGE asset includes value-adding services and attributes that
facilitate their use, e.g. instructions, tutorials, examples and best practices, empirical research papers
that validate their usage, instructional design guidelines, connectors to major game development
platforms, test plans, test scripts, design documents, data capacity, and content authoring
tools/widgets for game content creation.

pag. 62

International Journal of Serious Games Volume 4, Issue 3, October 2017
ISSN: 2384-8766 http://dx.doi.org/10.17083/ijsg.v4i3.171

Figure 1. Conceptual layout of a RAGE Asset

Figure 1 presents the general layout of a RAGE asset. It includes a software component that

should comply with the RAGE component architecture, already described and validated in [15]. The
RAGE architecture addresses both the internal workings of an asset and the level of interaction of
assets with the outside world, including the mutual communications between assets.

For preserving the portability requirements the RAGE architecture avoids dependencies on
external software frameworks and minimises code that may hinder integration with game engines.
It relies on a limited set of standard software patterns and well-established coding practices. These
include the “Publish/Subscribe” pattern, the “Singleton” pattern, the “Bridge” pattern, asset method
calls and web services. Nevertheless, portability across different programming languages is
sometimes affected by the different natures and execution modes of the supported languages, for
instance interpreted languages such as JavaScript versus compiled languages as C++, C# and Java.
Multi-threading versus single threading could hamper code portability. Still, the RAGE architecture
was successfully validated for the languages mentioned above, be it that some minor syntax issues
should be considered (e.g. the use of directory separators “/” versus “\” in Windows and Linux OS,
respectively) and some IDE version issues (e.g. Visual Studio). A list of compatibility issues and
their solutions have been reported in [13].

In addition, each RAGE asset contains metadata, which describe its content and functionality
in a machine-readable format. This metadata is essential for being able to classify, store, organise,
modify and search and retrieve assets from the repository. The metadata includes information that
is critical for running the asset software in an operational environment, e.g. on a game platform. This
relates to version information and information about dependencies on other software assets.
Furthermore, the metadata provides information about intellectual property rights and the asset’s
potential usage within three distinct dimensions – technological, applied gaming and pedagogical.
The RAGE metadata model is designed for defining the asset’s metadata in all three dimensions,
and to enable the proper implementation of the RAGE Asset repository system architecture [16].

4. Our approach

The research methodology for this study is based on the Rapid Application Development model [17].
We performed an extensive needs assessment study (partially described in [18]), including asset
developers, educators and game producers. We have identified the services to be supported through
the repository and other related tools and, in parallel, designed the RAGE metadata model to fit the
specified domain of reusable gaming components (RAGE software assets). It was clear that we could
not reuse any existing solution, but needed to design and implement our own software repository,
targeting the identified needs and characteristics of the applied game domain.

We then provided the initial design of the RAGE asset which consisted of a software component
additional artefacts, and the architecture of the RAGE software repository. The designs were aimed
at supporting the development, storage, sharing and reuse of assets. At a later stage we provided
details of the technical implementation of the software repository. We performed several iterations
between these two stages until a stable and near complete solution was achieved. In the final stage
we analysed the first use case scenarios of the repository through several client tools, arranged first
evaluations of the repository, and collected ideas for its improvement in the next cycle.

The results of each stage of development are herein presented.

Georgiev, A. et al., The RAGE Game Software Components Repository Supporting Applied Game Development pag. 63

International Journal of Serious Games Volume 4, Issue 3, September 2017
ISSN: 2384-8766 http://dx.doi.org/10.17083/ijsg.v4i3.171

5. The Asset repository system architecture

Metadata is a key part of the information infrastructure necessary to help create order and provide a
solid foundation for a number of information services such as descriptions, classifications,
organizations, store, search, creation, modification and aggregation of information [19]. Rather than
merely a software archive, the asset repository should be viewed as a system for managing the
lifecycle of an asset. In the repository the asset’s artefacts are collected and conceptually tied together
by defining the metadata and the reference to underlying artefacts. In addition, the repository
provides for the publication, updating, packaging for distribution and quality assurance, while
accommodating different end-user tools.

Thereby the RAGE asset software repository is at the core of the asset development
infrastructure. It is used to store and manage access to: (1) reusable game assets, (2) artefacts
(resources within game assets), (3) metadata for game assets and artefacts, and (4) relationships
between assets – dependencies, related assets, etc.

The Asset software repository leverages the discovery, development reuse and repurpose of
game assets and artefacts. Facilitating game asset developers and consumers in all activities relating
to the game asset lifecycle.
The main functions of the RAGE Asset software repository are as follows:

 Searching, finding and browsing software assets/artefacts
 Creating, updating, publishing, deleting and downloading assets/artefacts
 Versioning support, source code import from GitHub and integration with IDEs
 Harvesting of external repositories for game assets and metadata using the Open Archives

Initiative - Protocol for Metadata Harvesting (OAI-PMH)
 Reviewing and rating assets/artefacts

To implement these functions, we designed the asset repository infrastructure in three tiers:
client, service and data store tiers, which is visualised in Figure 2.

Figure 2. Asset Repository Architecture

6. Implementation of the asset repository system architecture

The next stage is the implementation of the Asset repository. Fedora [20] is used for storing assets,
metadata and artefacts; Sesame [21] for managing RDF data and supporting classification and
entities; and Solr [22] for indexing and searching the repository. The data store tier consists of these
three components and is used to store game assets, artefacts, metadata, taxonomies and indexes:

 Fedora stores the game assets, artefacts and metadata using RDF as primary data format. When
the repository is updated by creating, modifying or deleting resources, it generates specific
events so that the Fedora indexer copies RDF from the repository to an external triple store to
keep it synchronized with the repository. Fedora is flexible, well established and it ensures
scalability and durability (the complete repository can be rebuilt at any time).

pag. 64

International Journal of Serious Games Volume 4, Issue 3, October 2017
ISSN: 2384-8766 http://dx.doi.org/10.17083/ijsg.v4i3.171

 Sesame is an architecture for the efficient storage and expressive querying of large quantities
of metadata in RDF and RDF Schema. This includes creating, parsing, storing, inferencing and
querying over such data. Sesame RDF triple store contains metadata from Fedora and
classification taxonomies/vocabularies.

 Solr is an open source platform optimized for searching. Its major features are full-text search,
sophisticated faceted search, almost real-time indexing, dynamic clustering of data, etc. It is
used for creating full text indexes on the RAGE metadata fields, as well as for realizing full
text search and faceted search.

The service tier is used for access and preservation of the assets and artefacts. For the
implementation of this tier, we developed the following services that provide access to the
underlying data store tier:

 Fedora Services. Fedora provides a general RESTful HTTP API for accessing repository
resources through HTTP methods. It supports OAI-PMH [23] requests on content and metadata
in the repository.

 Sesame Services. Sesame offers a RESTful HTTP interface supporting the SPARQL Protocol
for RDF. It is a superset of the SPARQL and supports communication for Update operations
and the Graph Store HTTP Protocol [24].

 Solr Services. Apache Solr exposes Lucene’s Java API as REST-like API’s which can be
called over HTTP. The RESTful endpoints allow CRUD style operations to be performed on
the repository resources.

In addition, for the service tier to provide access to the client tier, we developed Asset Services
(see Figure 3) for composition and execution of workflows over RAGE Game Assets.

The client tier includes web-based applications, plug-ins for integrated development
environments, and software components from the RAGE ecosystem that uses the services supported
by Asset Repository Infrastructure. It includes:

 The Asset Repository Manager – we developed a web-based application embodying main
functionalities for lifecycle management of assets and artefacts.

 IDE plug-ins – we developed rich clients consuming services from the Asset Repository
service tier, which thus allows developers to manage assets from within their integrated
development environment (IDE).

 Other software components from the RAGE ecosystem, such as the Ecosystem Portal (EP),
which harvests assets and metadata through an OAI-PMH service provider from Asset
Repository Service tier. While the repository system reflects and supports the asset creation
process undertaken by IT developers, the EP is the publication platform and social
communication platform targeting applied game developers.

Figure 3. Asset Repository Architecture – Implementation

Georgiev, A. et al., The RAGE Game Software Components Repository Supporting Applied Game Development pag. 65

International Journal of Serious Games Volume 4, Issue 3, September 2017
ISSN: 2384-8766 http://dx.doi.org/10.17083/ijsg.v4i3.171

The Asset Repository services that we developed, constitute an open interface for creating,
modifying, deleting, and searching RAGE assets. They are realised on top of REST APIs, JSON,
JSON-LD [25], RDF and other widespread de facto standards. Based on the functionality exposed
by these services, they can be grouped as:

 Asset Access Services defining an open interface for accessing assets within the RAGE Asset
Repository allow for retrieving asset packages and metadata, and searching and browsing for
assets using keywords and metadata fields. The search interface provides both full-text search
and semantic search. Full-text search enables performing of natural language queries using
keywords and phrases occurring in any of indexed asset’s metadata elements. The semantic
search is using SPARQL for querying on asset metadata and Simple Knowledge Organization
System (SKOS) taxonomies data represented as RDF triples.

 Asset Management Services defining an open interface for administering assets, including
creating, modifying, and deleting, provide an abstract level of the operations, thus hiding the
complexities of the internal formats, protocols and procedures for storing an asset in the Asset
Repository.

 Taxonomy Services defining an open interface for managing classification taxonomies and
controlled vocabularies used in RAGE Asset Metadata Model [16] to classify and describe an
asset in educational and gaming contexts. For representation and storing Asset Repository
adopts SKOS standard [26].

 Authentication and Authorization Services provide access for organisational needs. These
services are implemented on top of Fedora Authentication and Authorization framework [20].

7. Usage scenarios

To observe how the asset repository together with related client tools can support the asset developers
and other users, and how effective and useful the services are, which it is offering, we designed
various usage scenarios. Asset developers and game developers were involved in evaluating the
functioning and usability of the repository.
In this section we present the scenarios.
To populate the repository with metadata we used four usage scenarios. The first scenario is
publishing/updating a game asset through the web-based interface offered by the Asset Manager.
The asset developer signs in, creates/selects an asset, enters/updates metadata and uploads artefacts
or a packaged asset (see Figure 4).
The second scenario is publishing/updating a game asset from GitHub. The asset developer again
should sign in the Asset Manager, creates/selects an asset, provides the GitHub repository identifier
and credentials (if required). The files (artefacts) and metadata from GitHub are automatically
harvested and published in the RAGE Asset Repository (using the GitHub API [27]). The user should
also supply the rest of the required metadata.

Figure 4. Using the RAGE Asset and Artefact managers, the RAGE Metadata editor and the RAGE Taxonomy
selector to populate the repository

pag. 66

International Journal of Serious Games Volume 4, Issue 3, October 2017
ISSN: 2384-8766 http://dx.doi.org/10.17083/ijsg.v4i3.171

In the third scenario, we tested publishing/updating a game asset from an IDE. For this scenario
we developed an Eclipse IDE plug-in. The asset developer opens the asset project in the Eclipse
IDE; using the plugin the developer creates/updates the asset in RAGE Asset Repository within the
IDE, providing credentials and needed metadata.

The fourth scenario: Asset consumers can search for a game asset using full text or advanced
search, browse the repository, view assets metadata and download assets or artefacts for reuse.

Currently the repository is populated with the metadata of all currently developed Assets in
RAGE project.

8. Usage of the RAGE Metadata editor

The Metadata editor has been used for creating and maintenance of metadata records of game assets
designed and developed in the scope of the RAGE project. Here, we discuss the process of the
creation of metadata records for two assets – the “Player-centric rule-and-pattern-based adaptation”
asset and the “Real-time arousal detection using Galvanic Skin Response” (GSR) asset. The first
asset is built as a pure software component searching for a pattern or a rule in development of given
player’s metrics (such as performance registered while solving a game task) and using its occurence
for game adaptation purposes. In contrast with it, the second asset includes software artefacts plus a
cheap custom hardware device for measuring the GSR signal from particular player, which is applied
for inferring tonic and phasic arousal of the player. Documentation and artefacts of both the assets
have been published in GitHub, therefore the second scenario from the previous section was
followed. This scenario helps asset developers by harvesting artefacts and metadata from GitHub
and publishing them in the RAGE Asset Repository. Next, we had to check records created
automatically and to supply the additional metadata.

The RAGE Metadata editor provides a concise graphic interface for creation and update of an
asset’s metadata, which is structured into six sections (tabs) named Main, Classification, Status,
Solution, and Usage (Figure 4), followed by an additional section showing the whole record. Each
field (excluding names of taxonomy concepts, dates, and URL’s) can be multiplied by additional
fields of the same type providing the same content in languages other than English. Taxonomy
concepts are to be defined within the Classification context of asset, where the editor provides
embedded support of the Rage Taxonomy selector as shown in Figure 5. Taxonomy concepts
checked and confirmed in the selector appear automatically below the taxonomy field, and vice
versa. Multiple Classification contexts can be added and described by selection concepts from
various taxonomies regarding game engine/genre/platform, asset status and type, etc.

Figure 5. A partial view of the RAGE Metadata editor with Taxonomy Selector

Besides Classification, the tabs about Solution and Usage appear to be the heaviest sections of each
asset metadata. Within the Solution tab, we specify metadata about one or more artefacts regarding
an asset’s requirements (e.g. use cases and other diagrams), design, implementation, and tests; while
within the Usage tab we provide metadata about artefact(s) about installing, customisation and using

Georgiev, A. et al., The RAGE Game Software Components Repository Supporting Applied Game Development pag. 67

International Journal of Serious Games Volume 4, Issue 3, September 2017
ISSN: 2384-8766 http://dx.doi.org/10.17083/ijsg.v4i3.171

the asset such as integration and configuration tutorials and physical asset elements. In addition, for
assets requiring a hardware component like the “Real-time arousal detection using GSR” asset, we
have to specify all of the metadata of the device. For both the Solution and Usage sections users are
able to add one or more custom metadata by specifying a key/value pair for each additional custom
record.

9. Scenario evaluation

This section presents the conclusions based on our observations of real users. An evaluation of the
usage scenarios was carried out by involving a group of 9 end users, viz. asset developers from the
RAGE project. Preliminary findings support the relevance of the repository system. Comments about
the first version of the repository and related client tools can be summarized as follows:

 Users can easily work with basic services such as searching, downloading or uploading assets
to the repository.

 Users need more specific instructions how to populate the repository with metadata.
 The metadata editor improves the process of populating the repository for users.
 Users encounter problems to identify the source of the information related to some of the

metadata fields, like keywords and others.
 There is a need to automate further the definition of metadata fields.

While the evaluation is preliminary and relatively informal initial response has been positive,
and confirms the viability of this first step within the RAGE Project. Although the overall conclusion
is that RAGE end-users accept the editor as a usable tool for entering their metadata, we did consider
that external technology developers who may wish to upload their components to the RAGE
repository, might be deterred by the complexity of the metadata and its documentation. In order to
arrive at a sustainable ecosystem with a continuous influx of new technology assets from external
parties, the metadata barriers should be as low as possible. Therefore, we designed and developed a
workflow guidance wizard, which facilitates a stepwise process of metadata entry, without the
requirement for extensive documentation. The wizard decomposes the process into 8 successive
steps along the most relevant parts of the RAGE metadata scheme (which is kept hidden). The 8
steps of the wizard are:

1. About (eight introductory metadata fields requiring general information, e.g. title,
description, etc.

2. Classification (six metadata fields requiring info about target platforms,
programming language, applied computing keywords)

3. Status (five metadata fields with info about the software version, version notes, commit
reference)

4. License (details about the licenses, conditions and potential restrictions)
5. Contacts (information about owners and creators)
6. Resources (six metadata fields with files or references to the software, documentation,

tests, etc.)
7. Quality (five metadata fields with information about the asset’s quality)
8. Submission (publishing the metadata in the repository)

A screenshot of step 1 of the wizard is presented in Figure 6.
Finally, we conducted a usability study of the asset creation wizard. We used three validated

measurement instruments for evaluating the usability of the Asset Creation Wizard, namely, a
System Usability Scale (SUS) [28], Form Usability Scale (FUS) [29,30], and the Usability Metric
for User Experience (UMUX) [31].

pag. 68

International Journal of Serious Games Volume 4, Issue 3, October 2017
ISSN: 2384-8766 http://dx.doi.org/10.17083/ijsg.v4i3.171

Figure 6. Screenshot of the asset creation wizard

SUS is a well-validated and reliable questionnaire applicable to a wide range of software
systems. However, the questions in the SUS questionnaire are too generic to evaluate usability issues
specific to online forms. For this reason, we employed the FUS questionnaire, which was
specifically designed for evaluating the usability of online forms. While the SUS and the FUS
questionnaires provide overall scores of usability, the UMUX questionnaire was developed to
explicitly reflect the four separate components of usability as defined by ISO 9241- 11: efficiency,
effectiveness, satisfaction, and overall usability. An optional open input field to comment the answer
followed each question in the measurement instrument.

The SUS questionnaire consists of 10 questions. Responses are measured on a Likert scale
ranging from 1 (strongly disagree) to 5 (strongly agree). The overall score per participant ranging
from 0 to 100 with 50 as being neutral.

The FUS questionnaire consists of 10 questions. Validation of the questionnaire showed that
question 7 provides little discriminatory value and information gain [29, 30]. Therefore, the question
is excluded from our analysis. In our study, we used a 5-point Likert scale and removed the option
for skipping. We normalized the FUS score to make it comparable with the SUS score. The overall
score ranges from 0 to 100.

The UMUX questionnaire consists of four questions. The two questions regarding the
satisfaction and overall usability overlap with two questions from the SUS questionnaire. Therefore,
we have reused responses for the SUS questionnaire for evaluating these two usability components.
We used a 5-point Likert scale for the purpose of consistency across questionnaires. The overall
score is obtained by dividing the sum of four scores by 16 and then multiplying by 100.

In total, 15 asset developers participated in the study. They are members of the RAGE project
from eight different organisations. Each one was instructed to use the wizard for submitting the
metadata and artefacts of their game assets to the RAGE repository. All participants managed to
successfully complete their submissions. Participants were asked to address and complete the
questionnaire(s) after usage of the wizard.

The mean overall SUS score is 72.8 (SD=16.3, SE=4.2) where SD and SE are the standard
deviation and the standard error, respectively. This overall usability evaluation is positive. All the
participants with one exception positively evaluated the overall usability of the Wizard. The mean
scores for all questions except one are positive. The question with the negative mean score (M=1.7,

Georgiev, A. et al., The RAGE Game Software Components Repository Supporting Applied Game Development pag. 69

International Journal of Serious Games Volume 4, Issue 3, September 2017
ISSN: 2384-8766 http://dx.doi.org/10.17083/ijsg.v4i3.171

SE=.3) is concerned with the frequency of using the Wizard. The negative score was anticipated as
the Wizard is projected to be used infrequently.

The mean overall FUS score is 65.7 (SD=16.0, SE=4.1). Overall the usability evaluation of the
Wizard is positive with room for improvement. Two participants negatively evaluated the overall
usability of the Wizard. The correlation between the SUS and the FUS overall scores is significantly
high (r(13) = .67, p = .006), which indicates that the FUS score is consistent with the benchmark
score of the SUS.

The mean scores for nine questions are positive. One question has a negative mean score
(Mean=1.9, SE=.3). The responses to this question indicates that the Wizard did not have sufficient
feedback to users for resolving unexpected problems.
Participants provided 34 (M=3.4, SE=.6) and 42 (M=4.2, SE=.7) comments to their responses in the
SUS and the FUS questionnaires, respectively. While overall usability scores are positive, the
number of comments indicates that there may be some specific issues in the Wizard that should be
further addressed. Finally, more comments in the FUS questionnaire indicate - as expected - that the
FUS questionnaire did capture the issues that are specific to online forms.

The mean overall UMUX score is positive (M=72.5, SD=16.7, SE=4.3). The distribution of the
overall scores also indicates positive evaluation with only one overall score being negative. The
correlation of the UMUX scores with the SUS scores is significantly high (r(13) = .88, p < .001).
The correlation of the UMUX scores with the FUS scores is significantly high as well (r(13) = .74,
p = .002). The results indicate that the evaluation of all three usability components (effectiveness,
satisfaction, efficiency) is positive. The Wizard is fit for purpose in managing metadata and artefacts.
The participants reported positive efficiency indicating that both the asset and metadata management
was fast and did not require substantial effort. Finally, the participants reported positive satisfaction
towards using the Wizard.

Further fine-tuning of the wizard and its accompanying instructions will be addressed in the
next version of the wizard software.

10. Workflow and Quality Assurance

The RAGE quality assurance processes are designed to encourage and support innovation and
agility. These processes are designed to be lightweight and easily implementable to encourage wide
engagement with the portal and expand use of the assets themselves.

Critical success factors for the software asset repository and the RAGE Eco-system is a rigorous
and robust, approach to Quality Assurance (QA). It is the aim of the RAGE project team to strike
an effective balance between; assuring the consistent integrity of the assets with easy to use, easily
implementable application and software quality criteria.

To ensure the quality of assets within the repository and in particular those contributed to the
portal by external Developers, who may not necessarily be familiar with the requirements and
workflows established within the RAGE project, users are guided within the asset manager and
metadata editor by an integrated widget, managed by system logic, to ensure version compatibility
and consistent code, metadata and documentation. The Quality metrics include the following self-
evaluated statements:

 The metadata field (software version).
The RAGE project specifies the semantic versioning specification 2.0.0 (SemVer).

 The overall source code quality.
The RAGE project requires confirmation from developers that any submitted code
conforms to the specified RAGE architecture requirements. That the software uses
consistent code and is well documented using defined documentation guidelines. The
software is portable and avoids any platform specific calls. Also, a series of general code
review checks are undertaken.

 The software testing.
The software includes (unit) tests and has passed the required tests (and includes test
reports). The software includes a set of dummy data for testing, and uses a Continuous
Integration system. The software has passed (if applicable) load tests (and includes test
reports) and if applicable in-game performance tests (and includes test reports)

 The software manuals and documentation.
The software includes API and release documentation.

 The software includes the corresponding license this has been determined as the Apache
2.0 for original RAGE software assets. The software includes build and run instructions and

pag. 70

International Journal of Serious Games Volume 4, Issue 3, October 2017
ISSN: 2384-8766 http://dx.doi.org/10.17083/ijsg.v4i3.171

documents all its dependencies and platform requirements. The asset provides clear
documentation referring to the originator and owner with contact details for support and
enquiry.

 Metadata.
That the software complies with RAGE metadata guidelines and schemas

 The non-software artefacts.
Asset promotional video and video tutorials with quick-start guides.

 Installation and user manuals are provided.
 Software testing reports are included in the asset with proof cases and authoring tools.
 An automated field of quality metrics.

Considering each of the other metrics above RAGE may define and publish an overall
quality metric that reflects assets completeness and conformity.

 Any other requirements (This includes such things as usability, fitness for purpose,
compatibility, packaging and integration.

Where practical and possible it is intended that the checks and balances defined in the Quality
assurance processes detailed above will be automated ; mindful that a positive user experience is
critical in supporting wider stakeholder engagement that and in underpinning the establishment of
a sustainable Eco-system.

11. Conclusions and future work

In this paper, we presented a unique software architecture supporting the lifecycle of reusable
software components for applied gaming. We have built using the best practices as described in the
research literature, including RAS based asset repositories, metadata based educational repositories,
and game asset stores. The software architecture plays a pivotal role within the RAGE Ecosystem,
developed for the RAGE project and is considered of strategic significance for the applied gaming
domain.

The repository as the content core system of the RAGE Ecosystem allows for flexible design
and development of RAGE game assets and future search, packaging and exchange. The current
architecture guarantees both scalability and durability. It also provides a high level of flexibility
across different taxonomies and standards.

Future work is planned on improving the architecture by automating Quality Assurance services
and asset development workflows, harvesting of assets from external systems and stores, adding
social functions for making the work for developers more easy and natural, and for specific targeted
support for the gaming community. A provisional launch of the repository integrated in the RAGE
social platform is expected later in 2017.

The repository presented in this paper and the wide range of easy-to-use game technology
components that it will expose are an important measure to counteract the fragmentation of the
applied game industry.

The approach detailed holds the promise to help unite, interconnect, and harmonise the applied
game industry in Europe and will help further in establishing it as an authentic sub set of the wider
Games Industry.

Acknowledgements.

This work has been partially funded by the EC H2020 project RAGE (Realising an Applied Gaming
Eco-System); http://www.rageproject.eu/; Grant agreement No 644187 and by national funds
provided through Fundacao para a Ciencia e a Tecnologia (UID/CEC/50021/2013).

References

[1] García Sánchez, R., Baalsrud Hauge, J., Fiucci, G., Rudnianski, M., Oliveira, M., Kyvsgaard
Hansen, P., Riedel, J., Brown, D., Padrón-Nápoles, C.L., Arambarri Basanez, J., Business
Modelling and Implementation Report 2, GALA Network of Excellence, , Deliverable D4.10,
2013.

Georgiev, A. et al., The RAGE Game Software Components Repository Supporting Applied Game Development pag. 71

International Journal of Serious Games Volume 4, Issue 3, September 2017
ISSN: 2384-8766 http://dx.doi.org/10.17083/ijsg.v4i3.171

[2] Stewart, J., Bleumers, L., Van Looy, J., Mariën, I., All, A., Schurmans, D., Willaert, K., De
Grove, F., Jacobs, A., Misuraca, G., The Potential of Digital Games for Empowerment and
Social Inclusion of Groups at Risk of Social and Economic Exclusion: evidence and opportunity
for policy. In Centeno C. (ed.) Joint Research Centre, European Commission, 2013

[3] “RAGE: Project Web site” http://www.rageproject.eu .
[4] Ackerman, L., Elder, P., Busch, C.V., Lopez-Mancisidor, A., Kimura, J., Balaji, N.A., Strategic

reuse with asset-based development, IBM RedBooks, 2008
[5] Norfolk, D., Atego Asset Library, White Paper, Bloor research, June 2013
[6] Hong-min, R., Zhi-ying, Y., Jing-zhou, Z., “Design and Implementation of RAS-Based Open

Source Software Repository”, in Proceedings of the Sixth International Conference on Fuzzy
Systems and Knowledge Discovery, Vol.2, pp.219-223, 2009

[7] Moura, D. S., Software Profile RAS: estendendo a padronização do Reusable Asset
Specification e construindo um repositório de ativos, Master’s thesis, Univ. Federal do Rio
Grande do Sul, Brasil, 2013

[8] Hilliar, G., Developing Cross-Platform Mobile Apps with HTML5 and Intel XDK, Dr. Dobb's
Journal, November 2014, UBM plc.

[9] Böhm, T., Klas, C.-P., Hemmje, M., “Supporting Collaborative Information Seeking and
Searching in Distributed Environments”. In Proceedings of the LWA 2013 Conference,
Bamberg, Germany, 2013

[10] Stefanov, K., Nikolov, R., Boytchev, P., Stefanova, E., Georgiev, A., Koychev, I., Nikolova, N.,
Grigorov, A., “Emerging Models and e-Infrastructures for Teacher Education”, in Proceedings
of the 2011 International Conference on Information Technology Based Higher Education and
Training ITHET 2011, IEEE Catalog Number: CFP11578-CDR, ISBN: 978-1-4577-1671-3,
2011 https://doi.org/10.1109/ITHET.2011.6018688

[11] Carvalho, M. B., Bellotti, F., Berta, R., De Gloria, A., Gazzarata, G., Hu, J., Kickmeier-Rust,
M., A case study on Service-Oriented Architecture for Serious Games, Entertainment
Computing, Vol. 6, January 2015, pp. 1-10, http://dx.doi.org/10.1016/j.entcom.2014.11.001

[12] De Gloria, A., Bellotti, F., Berta, R., and Lavagnino, E., Serious Games for Education and
Training, International Journal of Serious Games, Vol. 1, No. 1, 2014
https://doi.org/10.17083/ijsg.v1i1.11

[13] Vegt, W. van der, Westera, W., Nyamsuren, E., Georgiev, A. and Martínez Ortiz, I., RAGE
Architecture for Reusable Serious Gaming Technology Components. International Journal of
Computer Games Technology, vol. 2016, Article ID 5680526, 2016,
http://dx.doi.org/10.1155/2016/5680526

[14] Dekkers, M., Asset Description Metadata Schema (ADMS). W3C Working Group (2013)
[15] Vegt, W. van der, Nyamsuren, E., Westera, W., Martinez Ortiz, I., “RAGE Reusable Game

Software Components and their Integration into Serious Game Engines”, in Kapitsaki G. & S.
de Almeida E. (eds) Software reuse: Bridging the Social Awareness. ICSR 2016. LNCS Vol
9679, Springer, 2016

[16] Georgiev, A. Grigorov, B. Bontchev, P. Boytchev, K. Stefanov, K. Bahreini, E. Nyamsuren, W.
van der Vegt, W. Westera, R. Prada, P. Hollins, P. Moreno, “The RAGE Software Asset Model
and Metadata Model”, Serious Games, 2nd Joint International Conference, JCSG 2016, Lecture
Notes in Computer Science, Vol. 9894, pp. 191-203, Springer, 2016

[17] Martin, J., Rapid Application Development, Macmillan, 1991
[18] Hollins, P. Westera,W. Manero Iglesias, B., “Amplifying applied game development and

uptake”, In Proceedings of 9th European Conference on Game-Based Learning ECGBL 2015,
pp. 234-241, Steinkjer, Norway, 2015

[19] Duval, E., Hodgins, W., Sutton, S., Weibel, S. L., Metadata principles and practicalities. D-lib
Magazine, Vol 8, Nr 4, 2002, http://dx.doi.org/10.1045/april2002-weibel

[20] “Fedora 4.3 Documentation”, https://wiki.duraspace.org/display/FEDORA43/
[21] Broekstra, J., Kampman, A., van Harmelen, F., “Sesame: A Generic Architecture for Storing

and Querying RDF and RDF Schema”. First International Semantic Web Conference, Lecture
Notes in Computer Science, pp 54--68, Springer, 2002

[22] Smiley, D., Pugh, E., Parisa, K., Mitchell, M., Apache Solr 4 Enterprise Search Server, Packt
Publishing, 2014

[23] Lagoze, C., Van de Sompel, H., The Open Archives Initiative Protocol for Metadata Harvesting,
2015

[24] SPARQL 1.1: SPARQL 1.1 Overview, W3C Recommendation, 2013
[25] JSON-LD 1.0: A JSON-based Serialization for Linked Data, W3C Recommendation, 2014
[26] SKOS: Simple Knowledge Organization System Reference, W3C Recommendation, 2009

pag. 72

International Journal of Serious Games Volume 4, Issue 3, October 2017
ISSN: 2384-8766 http://dx.doi.org/10.17083/ijsg.v4i3.171

[27] “GitHub API: GitHub Developer Guide”, 2016, https://developer.github.com/v3/
[28] Brooke, J., “SUS – A quick and dirty usability scale”. In Patrick W. Jordan, Bruce Thomas,

Bernard A. Weerdmeester and Ian L. McLelland (eds.) Usability Evaluation in Industry, Taylor
and Francis, 1996, pp. 189-194.

[29] Aeberhard, A., FUS-Form Usability Scale, Development of a Usability Measuring Tool for
Online Forms. Master’s Thesis, University of Basel, Switzerland, 2011.

[30] Seckler, M., Heinz, S., Bargs-Avila, J.A., Opwis, K. & Tuch A.N., “Designing usable web
forms: empirical evaluation of web form improvement guidelines”. In Proceedings of the 32nd
annual ACM Conference on Human Factors in Computing Systems, ACM, 2014, pp. 1275-
1284. https://doi.org/10.1145/2556288.2557265

[31] Finstad, K., The usability metric for user experience. Interacting with Computers, Vol 22 (5),
2010, pp. 323-327. https://doi.org/10.1016/j.intcom.2010.04.004

