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Abstract  

Reality-enhanced gaming is an emerging serious game genre, that could 

contextualize a game within its real instruction-target environment. A key 

module for such games is the evaluator, that senses a user performance and 

provides consequent input to the game. In this project, we have explored an 

application in the automotive field, estimating driver performance in terms of 

fuel consumption, based on three key vehicular signals, that are directly 

controllable by the driver: throttle position sensor (TPS), engine rotation speed 

(RPM) and car speed. We focused on Fuzzy Logic, given its ability to embody 

expert knowledge and deal with incomplete information availability. The fuzzy 

models – that we iteratively defined based on literature expertise and data 

analysis – can be easily plugged into a reality-enhanced gaming architecture. 

We studied four models with all the possible combinations of the chosen 

variables (TPS and RPM; RPM and speed; TPS and speed; TPS, speed and 

RPM). Input data were taken from the enviroCar database, and our fuel 

consumption predictions compared with their estimated values. Results indicate 

that the model with the three inputs outperforms the other models giving a 

higher coefficient of determination (R2), and lower error. Our study also shows 

that RPM is the most important fuel consumption predictor, followed by TPS 

and speed. 

Keywords: Serious game, Reality-enhanced games, Fuel consumption, Fuzzy Logic, Driving 

behaviour, Driving feedback, On-Board Diagnostics-II (OBD-II), Open data, eco-driving;  

1. Introduction 

Transportation is a significant source of pollution [1]. Decreasing fuel consumption (FC) 

would save money and energy. As driving style is a controllable factor for FC [2], serious 

games (SGs) – games with a purpose different from pure entertainment – have been 

developed in order to improve the driving behaviour (e.g., [3][4][5]). High quality SGs are 

typically designed to transfer knowledge and skills, from game-play to real life [6][7]. This 

might be achieved by inserting game elements in real-world processes (i.e., through 

gamification [8][9]), applying Game Theory [10] or in “reality-enhanced” gaming approach 

– a user’s real-world activities do feed a digital game [6][11][12]. Such “reality-enhanced” 

games (or, more specifically, SGs) are specialization of pervasive games [13][14][15], a 

game genre in which players are immersed in real-life situations and leverage new types of 
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contextual interactions therein (allowing user interaction with a virtual environment) [16]. 

For “reality-enhanced” games to improve a driver behaviour, a major question concerns how 

to measure the driver performance, which could then be fed into the digital game in different 

compelling ways [17]. 

    The goal of this paper is to propose and assess a methodology through which to process 

vehicular data in real-time, so to compute driver performance assessment values (specifically, 

on driving efficiency – the less the fuel consumed, the more the driving is considered 

efficient) for use in automotive “reality-enhanced” SGs, in order to improve driver behaviour. 

The main requirements, that we developed stem from TEAM, a collaborative industrial 

project that implemented apps, including SGs, for collaborative mobility [17][5]: 

1. Real-time driver performance assessment, with a sample frequency in the order of 

few seconds, and with negligible computation latency (which is compatible with a 

typical game’s timing). 

2. Easy access to sensors. 

3. Easy to perform profiling and understandable modelling. 

4. The possibility of distinguishing between different performance factors, so to give 

coaching feedback to the driver. 

    As an indicator of driver performance in this study, we use FC, which is strongly 

influenced by driving styles [2][18][19], and can be quantified and validated. FC is not 

directly accessible through the common OBD-II interface. It must be estimated from other 

available signals. In general, FC estimation is challenging, taking the fact that it is influenced 

by several factors (Fig. 1) apart from driving patterns (e.g., driving environment, vehicle 

maintenance) [20][21]. This corresponds to the general case in which a user’s performance 

should be estimated by considering several different factors. 

 

 
Fig. 1. Influences that affect fuel consumption. 

 

    In the light of the above requirements, a Fuzzy Logic (FL) approach was chosen for our 

project, as a baseline to assess overall feasibility. FL is capable of transferring human 

knowledge and expertise into a mathematical model by means of if-then rules [22], matching 

any set of input-output data [23]. Unlike some other data analysis techniques, such as Neural 

Networks, a FL model itself is readily understandable, which is a key requirement to give 

coaching feedback to drivers. It uses natural language techniques and variables which are 

based on the degree of truth, that are easier to understand for humans. FL has been frequently 

applied to problems with incomplete, imprecise and non-linear data, combining flexibility 

and simplicity [20][24], and has been considered “promising” in a recent review of driving 

style analysis systems [25]. Thus, we have first defined a set of vehicular signals that have a 

significant impact on FC and are controllable by the driver. Then, we developed FL-based 

estimators, exploiting those sensors on naturalistic driving historical data.  

    The remainder of the paper is organized as follows: Section 2 reviews the literature; 

Section 3 presents the data querying process, the feature selection, the modelling process of 
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the proposed fuzzy systems; Sections 4 illustrates our experiments to validate and assess the 

models; conclusions and future works are drawn in Section 5. 

2. State of the Art 

In-car gaming is gaining relevance – it has the potential of making use of all the cool 

properties of the car itself, the different practices for driving, and driving as a socially shared 

experience, and challenges (e.g., aspects of driving, such as driving as an arena for gaming) 

[26]. Several in-car game concept designs have been discussed in [3]. They have also 

considering the driving style. In [27], an incentive-based mechanism was adopted to improve 

driver behaviour in managing traffic congestions. [4] evaluated the effects of gamification on 

driving, especially considering boredom. The Car-wings application by Nissan, represents 

FC status versus money spent and also provides a comparison among different drivers’ 

performance [28]. The Car2Go application provides gamification features to support 

environmentally friendly behaviour [29]. [30] discussed the effects of gamifying recreational 

bicycle riding, with positive and negative consequences. [17] presented the TEAM SG 

concept architecture, with three layers, distinguishing (1) sensing modules (e.g., the vehicular 

signals), from (2) game logic (e.g., virtual bank, snake & ladders, races), from (3) user 

interface (e.g., on a Smartphone). Decoupling these three sub-systems, allows such an 

architecture to implement various types of games, fed (e.g., directly as a score or indirectly 

as an energy factor, or even to use other game mechanics) by the seamless insertion of sensing 

modules (e.g., to evaluate the drive style, but also other aspects of driver/user performance), 

and providing different modalities of user interaction.  

    Driving data analysis is ever more important with the recent advancements in vehicle 

safety and efficiency; contextual vehicular sensor data analysis, can provide information 

relevant to driver’s style and mobility patterns including understanding traffic patterns [31]. 

Modern vehicles collect information from hundreds of sensors, that are connected to the 

Electronic Control Unit (ECU) through a wired sensor network, typically one or more 

Controller Area Network bus (CAN bus).  Some car data can be publicly gained through the 

On-Board Diagnostics (OBD) universal interface [32]. Increasing studies rely on OBD data 

to determine driving profiles (e.g., [33][34][35]), to estimate FC (e.g., [36][37][38][39]) and 

to measure the gas emission of a car (e.g., [36][40]).  

    FL has been applied in numerous application domains, including driver behaviour analysis. 

[41] presented a vehicle speed limit model, with a road safety model discussion based on 

fuzzy rules. A recent review paper has shown the relevance of FL for driving style analysis 

[25]. FL has been used for driver fatigue and distraction identification (e.g. in [42]), scoring 

(e.g., in [43][44]), driving style recognition (e.g., in [34][45][46][47][48]) and FC estimation 

(e.g., in [20][39]). Throttle position sensor (TPS), RPM and car speed – that are our selected 

sensors - have been used in [39] to develop an estimation system, that outputs a categorical 

level of FC (very low, low, medium, High, very high).  

    In eco-drive-oriented Advanced Driving Assistance Systems (ADAS), a model able to 

predict FC is a prerequisite [49]. Upon [36], the “engine fuel rate” sensor is readable only in 

relatively very few car models to date as it is not mandatory in the OBD-II standard protocol. 

Hence, a number of ways have been proposed to estimate FC, e.g., using Mass Air Flow 

(MAF). Several researchers have studied driver style assessment and categorisation based on 

FC. A promising and effective approach is to use eco-drive technologies, that monitor the 

driver behaviour [50][51][52]. Eco-drive has been useful for fuel-efficiency, environmental 

protection, riding comfort, and noise pollution [35]. Some companies have long since 

recognized the value of training drivers for this purpose and started providing eco-drive 

training achieving FC reductions between 2.6% [53] and 20% under real-world driving 

conditions [54]. [55][56] argue that modifying drivers’ behaviour through proper feedback 

can also potentially lead to FC reductions.  
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    The selected sensors, RPM, TPS and car speed are considered in the five common rules of 

eco-driving [57][58][59], and they have been used to discriminate between different driving 

styles [60] and  using FL [45][39]. These variables are also easy to access from the car – they 

are directly available from the OBD-II standard interface. 

    The standard OBD-II signal list is aimed at vehicular diagnosis. It does not include some 

other inputs that affect human driving behaviour and hence influence FC such as acceleration 

and brake pedal pressure. This limitation might be overcome by carefully including 

synchronized signals from other devices, such as cellular phones, that include inertial sensors 

(accelerometer, gyroscope, magnetometer [5][61][62]). 

3. Modelling Fuel Consumption 

3.1 Data querying framework 

As a first choice, we decided to access vehicular information through the standard OBD-II 

port. An OBD-II interface is legally required in the US since the year of manufacture 1996; 

in Europe it is legally required for cars with a gasoline engine built from 2001, for diesel 

vehicles built from 2003 and for trucks built from 2005. In order to have the database to 

define and measure the accuracy of the model, we relied on the enviroCar platform – a 

community-based open data collection platform for gathering anonymised vehicular sensor 

data from naturalistic driving [36]. The community uses standard Bluetooth OBD-II adapters 

that read vehicular information through the OBD-II port. This information is sampled at 

regular time intervals. Most of the requested available data tracks are recorded at a 5s 

sampling time by an enviroCar Android Smartphone app and delivered to a server together 

with added GPS information. Further information, such as FC and Carbon dioxide (CO2) 

emission, are computed and added on the server. The enviroCar community relies on the 

“Mass Air Flow” (MAF) sensor, which measures the amount of air that flows into the engine. 

The engine control unit uses this to determine how much fuel must be flown into the engine 

cylinders. Consistently, our analysis shows a Pearson Product Moment Correlation (PPMC) 

value equal to 1 between FC and MAF (Fig. 4). Tests conducted in [63] show that the MAF 

is a best candidate for estimating FC from OBD data. In this work, however, we focused on 

sensors that are affected by driver style and are easy to explain to return feedback to the 

driver.  

 

                                     (1) 

 

                          (2) 

 

    EnviroCar estimates FC for gasoline vehicles through the formula in eq. (1), described in 

[64], where MAF is measured in (grams/second), AFR is the Air Fuel Ratio (Mass Ratio of 

Air to fuel), which is 14.7 for gasoline. MAF over AFR is thus in (grams/second). EnviroCar 

provides the FC in (litres/h), where gasoline has a 745 (grams/litre) density (see eq. (2)). Fuel 

combustion is complete when there is a ratio of 14.7 kg of air per 1 kg of gasoline [36]. 

Although the MAF sensor is mandatory in the OBD-II standard, it is not supported by some 

vehicle types. Thus, the enviroCar community estimates it by utilizing other parameters, 

namely temperature, air pressure, and engine speed [36]. In this work, the focus is on gasoline 

engines, as enviroCar’s FC estimation provides the best accuracy for a gasoline engine rather 

than diesel engine [65]. 
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Fig. 2. Data querying system architecture. 

 
    The present work leverages the 3 layer TEAM architecture – that can be logically ported 

to other application domains beyond cars. This can process the signals from the physical 

sensors on a vehicle to estimate in real-time the driving behaviour of a user that will be 

employed as a part of a SG. More specifically we address techniques for implementing layer 

1 in the TEAM architecture. To access the enviroCar data that is needed to define and validate 

our FC module for the sensor layer of the TEAM SG concept architecture, we developed a 

software system which is depicted in Fig. 2.  

     To do this, we request data through a JSON (JavaScript Object Notation) interface, using 

enviroCar REST API via HTTP requests [36]. Our system analyses the received data and 

stores them in a local relational database. In order to recognize the country where the track 

was recorded, we use “Google Maps API”1 provided by “ggmap”2 library in the process of 

back (reverse) coding3 a point location (latitude, longitude) to a readable address (country, 

locality, and route). For all our analyses, we considered 1,090 tracks for gasoline engine 

vehicles, with 733,274 measurements (after ignoring incomplete records), that were recorded 

mostly in Germany (a few tracks are recorded in other countries e.g., France) in the period 

2012-01-01 – 2016-04-19. 
 

 
(1) 

 
(2) 

 
(3) 

Fig. 3. Scatterplots from the enviroCar database. (1): FC – TPS.                                     (2): 

FC – RPM. (3): FC - Speed. 

    As anticipated, we focused on the sensors that determine how driving style impacts the FC 

in a way that is easily accessible and understandable, to provide direct feedback to the driver. 

To this end, we analysed the correlation of FC (computed by enviroCar) with the 13 OBD-

II/enviroCar provided sensors, and finally chose TPS, RPM and car speed. Fig. 3 shows the 

FC plots against TPS (Fig. 3 (1)), RPM (Fig. 3 (2)), and car speed (Fig. 3 (3)), for all the 

analysed available data. Fig. 4 shows the correlations  

                                                           
1 Google Maps Platform https://cloud.google.com/maps-platform/ 
2 Reverse geocode in R with ggmap package 

https://www.rdocumentation.org/packages/ggmap/versions/2.6.1/topics/revgeocode 
3 Google Maps reverse geocoding  

https://developers.google.com/maps/documentation/geocoding/start 
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Fig. 4. Correlation between enviroCar estimated FC and car variables 

                         [ellipse shapes and colours are explained in the text section 3.1]. 
 

in a symmetric matrix between some OBD-II variables in our database and the FC values 

estimated by the community. The Pearson Product Moment Correlation (PPMC) between FC 

and our selected variables is quite high (0.8, 0.82 and 0.75, for TPS, RPM, and speed 

respectively). On one side, the matrix shows the explicit values of the correlation: high 

correlation values between 0.5 to 1 (eclipses tend to more dark blue colour) or -0.5 to -1 

(eclipses tend to more dark wine red colour); medium correlation between 0.3 to 0.5 (eclipses 

tend to medium blue colour) or -0.3 to -0.5 (eclipses tend to light coral colour); low 

correlation between 0.1 to 0.3 (eclipses tend to light blue colour) or -0.1 to -0.3 (eclipses tend 

to light coral colour); 0 indicates no correlation between variables (eclipses with transparent 

colour). Ellipses with a shape close to straight line indicate a pair of tightly linked sensors, 

that may be directly or inversely correlated, depending on the direction of the ellipse’s main 

axis. 

 

3.2 The fuzzy model 

The Mamdani FL model [66][67], that we follow in this work, considers linguistic variables 

(e.g. very cold, slightly hot) in both the antecedent and consequent parts of the rules. So, in 

multi-input and single-output (MISO) systems, fuzzy IF-THEN rules are of the following 

form (3): 

 

                                  IF X1 is A1 and … and Xn is An THEN Y is B,                          (3) 

 

where Xi is input linguistic variable and Y is output linguistic variable, and Ai and B are 

linguistic values. The standard workflow for the Mamdani model is displayed in Fig. 5, with 

3 main steps:  

1. Fuzzification: convert classical (crisp) data into fuzzy data or membership functions 

(MFs).  

2. Inference: combine the fuzzy set definitions and parameters of MFs with the fuzzy 

control rules applied, which can be considered as the knowledge of an expert in the 

field of application, to derive the fuzzy output.  

3. Defuzzification of the output distribution: convert the linguistic fuzzy output 

(resulted from the previous step) back to the classical output (real value). 
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Fig. 5. Fuzzy Inference System of Mamdani model. 

    In this work, the fuzzy rules were built based on the fuzzy AND operator and all the rule 

weights are set equal to 1. Defuzzification is done based on the centroid technique. The first 

step of the process consists in specifying the variable ranges. Observing the available data, 

we consider 0-100 (%) the domain for the TPS range; 0-6000 for RPM range; 0-200 (km/h) 

is for car speed range; and 0-30 (l/h) for FC range. In order to identify the best solutions, we 

tested several alternatives, starting with the definition of MFs of the various variables. For 

TPS, after several experimental attempts, also with more levels, we employed the MFs 

determined through expert driver knowledge in [45]. For RPM, car speed and FC, as shown 

later in this section, we defined, our own MFs based on logic, and then refined them through 

trial and error, which we employed for the definition of the rules too. 

    To define the rules, that decide the output MF for each combination of the inputs, we 

exploit the following statistical information: First quartile (Q1), which is the middle number 

between the smallest number and the median of the data set; Median, that marks the middle 

of the data in the sense that half of the data is less than the median; and the Third quartile 

(Q3), which is the middle value between the median and the highest value of the data set. 

 
Fig. 6. Example of rule selection. 

    In the following, we show an example of building a rule for fuzzy inference system 1 

(FIS1) with TPS and RPM as inputs, described in the next section [3.2.1. FIS1: TPS and 

RPM] and its MF plots are illustrated in Fig. 8. Fuzzy values of TPS are defined to be Low 

(L), Medium (M) and High (H), as specified through expert knowledge in [45]. Five MFs are 

used for “RPM”: Very Low (VL), Low (L), Medium (M), High (H) and Very High (VH). 

The MFs of the output, are defined to be Very Low (VL), Low (L), Medium (M), High (H) 

and Very High (VH). To estimate the FC level when (RPM is H) AND (TPS is H), we filter 

the FC data satisfying the condition: (2500<RPM<4000) AND (TPS>60) and get the 

following statistical information: Q1 = 11.76, Q3 = 18 and Median = 14.79. Considering our 

FC MFs ({Very Low (VL), Low (L), Medium (M), High (H), Very High (VH)}) (Table 3 

and Fig. 8 (c)), the Q1-Q3 range overlaps with three FC MFs: M, H and VH), with most of 

the data is in the H level (Fig. 6). The median is in H as well. We thus deduce the rule: IF 

(RPM is H) AND (TPS is H) THEN FC is H. If the median and Q1-Q3 criteria do not agree 

(e.g., the median might be in the intersection of two different FC levels), some more 

processing would be needed. These uncertain cases are handled by measuring the 

performance of the fuzzy estimator in the two possible output levels and deciding the level 

that returns the smaller Mean-squared-error (MSE) with respect to the reference value. The 

overall process is illustrated in Fig. 7. 
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Fig. 7. The fuel consumption algorithm. 

 

    In the following text, we present our best performing implementations of FL-based 

modules for the four possible combinations of the selected input sensors, namely FIS1, with 

TPS and RPM; FIS2, with car speed and RPM; FIS3 with TPS and car speed; and FIS4 with 

all the three inputs. 
 

3.2.1 FIS1: TPS and RPM 

FIS1 includes two inputs: TPS and RPM. The MFs of two variables with their ranges are 

shown in Table 1 and Table 2 respectively.  
 

Table 1. Membership Functions of TPS (%) input. 

Membership Function L M H 

Throttle Position (%) 0-40 20-80 60-100 

 

Table 2. Membership Functions of RPM input. 

Membership Function VL L M H VH 

RPM 0-1000 500-2000 1500-3000 2500-4000 3500-6000 

 

The fuzzification step of the two inputs, is made by their MFs. The two MF plots are shown 

in Fig. 8 (1) and Fig. 8 (2). The fuzzy controller output is derived from fuzzification of both 

inputs and outputs, defining the associated MF. The MFs of the FC are shown in Table 3, and 

the corresponding MF plots are presented in Fig. 8 (3). 
 

Table 3. Membership Functions of FC (l/h) output. 

Membership Function VL L M H VH 

Fuel consumption (l/h) 0-4 2-8 6-12 10-18 15-30 
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(1)  

 
(2) 

 
(3) 

 
(4) 

Fig. 8. MFs of FIS1 variables. (1): TPS MFs. (2): RPM MFs. (3): MFs of FC output. 

(4): Whole process mapping of FIS1 by output surface plot for TPS, RPM, and FC. 

 

Table 4. Fuzzy Rules matrix for FIS1. 

RPM 

TPS 
VL L M H VH 

L VL VL L M H 

M VL L M H H 

H VL L M H VH 

 
The fuzzy rules with the AND operator are provided in Table 4. An example of rule is thus 

the following: when TPS is ‘M’ and RPM is ‘VH’, FC is ‘H’. The FIS1 three-dimensional 

view on the data – output surface plot representing the dependency of the FC output on the 

two inputs – is shown in Fig. 8 (4). It is a three-dimensional surface that represents the 

mapping from TPS and RPM to FC.  

 

3.2.2 FIS2: Car speed and RPM 

The second combination involves the car speed and RPM sensors. The MFs of car speed with 

its ranges, are shown in Table 5. Corresponding fuzzy values are defined to be Low (L), 

Medium (M), High (H) and Very High (VH). The plots of MFs for the inputs and output (FC) 

are shown in Fig. 9 respectively: (1) Car speed MFs plot; (2) RPM MFs plot; (3) FC MFs 

plot. Fig. 9 (4) displays the control surface generated by the fuzzy system; FC output is plotted 

against the two input variables (car speed and RPM).  
 

Table 5. Membership Functions of car speed (km/h) input.  

Membership Function L M H VH 

Car speed (km/h) 0-60 40-100 80-140 110-200 
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(1) 

 
(2) 

 
(3) 

 
(4) 

Fig. 9. MFs of FIS2 variables. (1): Car speed MFs. (2): RPM MFs. (3): MFs of FC output. 

(4): Whole process mapping of FIS2 by output surface plot for speed, RPM, and FC. 

The deduced Fuzzy rules are provided in Table 6. For instance, if car speed is ‘H’ and RPM 

is ‘H’, FC is ‘M’ and if the speed is ‘L’ or ‘M’, yet the RPM is ’VH’, then the FC is ‘VH’ 

because the vehicle is being driven less efficiency than if the speed was ‘VH’ and the RPM 

is ‘VH’. 

 

Table 6.  Fuzzy Rules matrix for FIS2. 

RPM 

Speed 
VL L M H VH 

L VL VL L M VH 

M VL L L M VH 

H VL L L M H 

VH VL M M H H 

 

3.2.3 FIS3: Car speed and TPS 

 

 
(1)  

 
(2) 

 
(3) 

 
(4) 
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Fig. 10. MFs for the inputs and output of FIS3. (1): TPS MFs. (2): Car speed MFs. (3): MFs 

of FC output. (4): Whole process mapping of FIS3 by output surface plot for TPS, speed, 

and FC. 

The combination of TPS and car speed is modelled in FIS3 (Fig. 10). The 3D interpretation of the FIS3 

input-output relations, is illustrated with an output surface in Fig. 10 (4). 

 

Table 7. Fuzzy Rules matrix for FIS3. 

Speed 

TPS 
L M H VH 

L VL L L M 

M L M H H 

H L M H VH 

 

3.2.4 FIS4: Car speed, RPM and TPS 

The last FIS includes all the three inputs, for which the MFs were shown previously. Sixty 

possible combinations of the variable MFs with AND operator were studied, with TPS ({L, 

M, H}), RPM ({VL, L, M, H, VH}), and speed ({L, M, H, VH}) respectively. After the 

synthesis step – deciding, with the suggested approach (Fig. 7), the following seventeen rules 

have been deduced: 

 

1. if RPM is VL then FC is VL 

2. if RPM is L and TPS is L and Speed is (L or M or H) then FC is VL 

3. if RPM is L and TPS is L and Speed is VH then FC is L 

4. if RPM is L and TPS is M then FC is M 

5. if RPM is L and TPS is H and Speed is (L or M) then FC is L 

6. if RPM is L and TPS is H and Speed is H then FC is VH 

7. if RPM is L and TPS is H and Speed is VH then FC is H 

8. if RPM is M and TPS is L then FC is L 

9. if RPM is M and TPS is M then FC is M 

10. if RPM is M and TPS is H then FC is M 

11. if RPM is H and TPS is L then FC is L 

12. if RPM is H and TPS is M and Speed is L then FC is M 

13. if RPM is H and TPS is M and Speed is (M or H or VH) then FC is H 

14. if RPM is H and TPS is H then FC is H 

15. if RPM is VH and TPS is L then FC is M 

16. if RPM is VH and TPS is M then FC is H  

17. if RPM is VH and TPS is H then FC is VH 

 

    The reduction to seventeen rules was obtained by synthetizing all the sixty resulting rules. 

For instance, when RPM is ‘VL’, FC is always ‘VL’, independent of the level of TPS and 

speed. The 12 rules where RPM is ‘VL’ could thus be summarised by the first rule above (if 

RPM is VL then FC is VL). In general, the rules highlight a higher impact on FC of RPM, 

compared to speed and TPS. We also argue that TPS is the second informative ones for the 

model. As an example, in rules (15)-(17), if we have “Very High” level for RPM, the output 

is based on the TPS value: “Low” TPS implies “Medium” FC; “Medium” TPS implies 

“High” FC; “High” TPS implies “Very High” FC. 

4. Experimental Results and Discussion 

The Fuzzy models were developed using the “FuzzyToolkitUoN” R package [68], and the 

experimental tests were conducted in the same computational environment, on an 8 GB RAM 

and i7-770 CPU desktop PC. For each one of our four FL models, every input sample was 
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processed within 0.01 seconds (this is thus our estimator’s latency time experienced by a 

user). FC output values of our fuzzy inference systems (FISs) were then compared with the 

consumption reported in the enviroCar database.  
 

Table 8. Model performance comparison. 

                       Model 

 

Track data 

FIS1 

TPS & RPM 

FIS2 

Speed & RPM 

FIS3 
TPS& Speed 

FIS4 
three inputs 

R2 MSE R2 MSE R2 MSE R2 MSE 

All available gasoline 0.62 5.8 0.47 8.25 0.64 5.52 0.71 4.69 

Same car  0.85 1.75 0.53 4.75 0.76 3.53 0.86 1.52 

 

    Table 8 provides the differences between the developed models outcome and the target FC 

provided by the enviroCar database in terms of R squared (R2) and the Mean-Squared-Error 

(MSE). The model with three inputs (FIS4) is the best one, with the highest R2 (0.71) and the 

lowest MSE (4.69). FIS1 and FIS3 return good results, with R2 equal to 0.62 and 0.64, 

respectively, and with MSE equal to 5.8 and 5.52, respectively. FIS2 is not as accurate as the 

other models, achieving the lowest R2 (0.47) and the highest MSE (8.26). The absence of 

TPS in FIS2 suggests its importance. A parametric analysis would clarify and validate our 

assumption by investigating how each of the considered variables actually influences FC (e.g. 

[69]). 

    In order to check the effect of some of the other factors illustrated in Fig. 1, and not 

captured by our sensors, we evaluated the models on data from the same car. We thus 

considered 111 different driving tracks with 47,076 measurements (after ignoring incomplete 

records) for a gasoline car with the following characteristics: Volkswagen (VW) 

manufacturer, 9N model constructed in 2009. Results in Table 8, show a higher accuracy than 

in the general case (when working on different car types), for all the four models, with higher 

R2 values 0.85, 0.53, 0.76 and 0.86 and lower MSE values 1.75, 4.75, 3.53, and 1.52 for FIS1, 

FIS2, FIS3 and FI4 respectively. This result suggests the importance of also considering other 

factors (e.g. car characteristics such as engine size, number of cylinders, engine 

displacement) in estimating FC.  
 

 

Fig. 11. Evaluation of FIS4 with a track. 

    Fig. 11 shows the time evolution of our estimation (obtained with the FIS4 model) vs the 

actual enviroCar data in a sample track. It is clear that the predictor is able to follow the main 

peaks of the signal (even without the possibility of having a direct input about 

acceleration/deceleration), while it has difficulty in capturing small variations around the 

average value around 5 l/h. We argue that our FL module might be improved in those cases 

by introducing other input sensors, for instance, the engine load sensor. 

    As anticipated, one of the expected benefits of employing FL consists of the possibility of 

providing coaching feedback to the driver (the link between outcomes with inputs) and by 

the fact that the rules are applied to input values that – at least in our case – can be directly 

http://journal.seriousgamessociety.org/


R. Massaud. at al. A fuzzy Logic Module to Estimate a Driver’s Fuel pag. 57 

 
International Journal of Serious Games                                                                                        Volume 5, Issue 4, December 2018 

ISSN: 2384-8766   http://dx.doi.org/10.17083/ijsg.v5i4.266                                                                                                                        

controlled by the user. As a simple example, upon the 14th rule of FIS4, if a “High” FC is 

obtained because of a “High” RPM and a “High” TPS value, we can advise the player to 

decelerate, or to shift up a gear.  

5. Conclusion and Future Work  

Reality-enhanced gaming is an emerging serious game genre, that looks beneficial 

particularly because of its ability to contextualise a game within a real target environment. A 

key module for such games is the evaluator that senses a field user’s or worker’s performance 

and provides consequent input to the Serious Game (SG). In this project, we have explored 

this field, focusing on estimating automotive driver performance in terms of FC, based on 

TPS, RPM and car speed variables read from the OBD-II interface. In a baseline approach, 

we have focused on FL, a promising technique for driving style analysis [25], that gives the 

possibility of distinguishing between different performance factors, so to give coaching 

feedback to the driver. Thus, a major contribution of this paper consists in showing a process 

that might be implemented and adapted to other instructional domains as well. Four fuzzy 

inference systems (FISs) with all the possible combinations of the inputs, have been 

modelled: FIS1 (TPS and RPM), FIS2 (speed and RPM), FIS3 (TPS and speed) and FIS4 

(with all the three inputs). It has been defined on the basis of naturalistic driving data (733,274 

measurements) and was not calibrated for a specific car model, which made the work 

challenging. Data were taken from the enviroCar database, and our FC predictions were 

compared with theirs, with a regression analysis for a track. The MFs and fuzzy rules for the 

models have been defined based on literature expertise, data analysis and trial and error. The 

developed FC models can be easily plugged in a reality-enhanced gaming architecture (e.g. 

[17]), as the estimated value can then be seamlessly fed in different game logics and treated 

according to their specificity. Results indicate a R2 best value of 0.71 and 4.69 for MSE, with 

FIS4 in the regression evaluation process with the observed consumption provided by 

enviroCar. The deduced fuzzy rules show that RPM is the strongest fuel consumption 

predictor, followed by TPS and car speed. 

    Our FIS1 and FIS4 models achieve good results when dealing with only one vehicle, 

confirming the importance of considering other variables beyond those we got from the OBD-

II port, such as vehicle characteristics (e.g., engine size and displacement). Finally, our 

approach achieves a real-time performance (0.01 s. response time), which is needed for 

gaming.  

    These results are promising, and further work is required to improve estimation accuracy. 

We plan to work on other defuzzification techniques and check how they influence the 

outcomes. A Machine Learning (ML) approach could be tested to automatically generate the 

fuzzy rules. More complex models could be designed, including other variables 

representative of the driving pattern not provided by the OBD-II interface, such as 

acceleration and deceleration, that could be considered by exploiting inertial sensors 

available in cellular phones (e.g., [5]). The effect of external influences should be considered 

as well, such as time of the day, state of the road, and weather.  

    We also argued that the proposed FL framework can include the indirect uncertainties in 

measurement and it can make possible to lower the particulate matters (PM) and FC 

simultaneously using Mass Air Flow (MAF) and in-cylinder pressure. The fact that in 

addition to FC, the PM has a more important role in the vehicle overall emission comparing 

to harmful gases Nitrogen Oxide (NOx), Hydrocarbon (HC) and Carbon Monoxide (CO), 

which by using the three-way catalyst and stoichiometric combustion can be comfortably 

reduced to the European standards. Measuring the PM concentration levels is directly not 

feasible. Employing novel Gasoline Direct Injection (GDI) technology in modern engines for 

this purpose still faces a number of challenges in acquiring accurate PM data. The 

concentration level, indicated by specific particulate matter by mass (ISPMM) in g/kWh (see 

eq. (4)), is directly related to the measurement of fuel mass flow rate (MFF) and air mass 
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flow (MAF) rate in g/min. CAM refers to concentration accumulation mode weighted by 

mass and MMEx is the Molar Mass of Emissions [70][71]. 

 

𝐼𝑆𝑃𝑀𝑀 =
𝐶𝐴𝑀 ∙ 10−6 ∙ 103 ∙ (𝑀𝐴𝐹 + 𝑀𝐹𝐹) ∙ 60

𝑃𝑖 ∙
𝑀𝑀𝐸𝑥
22.7𝐿

/𝑚𝑜𝑙
                                (4) 

   

    To lower the PM concentration, it is necessary to normalize the FC and PM emissions 

values by engine power outputs (𝑃𝑖), which is, in turn directly related to the in-cylinder 

pressure measured via the Electronic Control Unit (ECU) in every engine cycle, e.g. 10ms. 

The proposed FL approach can include such indirect measurement uncertainties in cylinder 

pressure, MAF, and MFF due to other environmental variables and inherent measurement 

inaccuracies in current sensor technology. Therefore, it can give more accurate results in 

reducing both the FC and PM in case of measurement uncertainties, compared to other 

Artificial Intelligence (AI) or ML approaches, which heavily depend on direct sensory data 

and cannot cope well with measurement uncertainties.    

    We will explore a FL model to specifically reduce the PM concentration level which is 

currently a demanding task due to lack of sensor technology for such direct but critical 

measurements. In this way, we are interested in understanding the possible benefit of 

combining data-driven models with our FL model, and ML techniques such as Neural 

Networks, Random Forests and Support Vector Regression in enhancing the model accuracy 

and overall integrability in a SG design workflow. Considering other variables (even if not 

directly controllable by the driver), such as engine load (with PPMC equal to 0.85, Fig. 4), 

could help in increasing the model accuracy with much more complex model design. 

    If players are to interact with a Reality-enhanced gaming system, it is paramount that they 

trust that the system offers sufficient security, including privacy for their driving behaviour 

information - this trust must be managed by the system [72]. Note many IoT devices even in 

vehicles may have zero or minimal security by design because of the use of low resource, 

low power devices or because they are designed to work as closed vertical services. Security 

threats and risks may be higher because devices are unattended, use local wireless 

communication that have no or weak encryption making them more susceptible to 

eavesdropping and because users find the security too unusable to setup and operate and 

hence leave devices relatively unsecure. For these reasons, the security and privacy support 

by the system needs to be designed to be adaptive [73]. 
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