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Abstract  

Research has shown that serious games can improve cognitive functions, 

particularly attention. Feedback, a key component in serious games, is 

typically delivered through various modalities such as auditory, visual, and 

tactile channels. This study investigates how different feedback modalities 

(auditory, visual, and tactile) affect sustained attention during a 12-session 

training period in a sample of 19 participants. A custom-built Android car 

racing game was used to test four groups: auditory feedback, visual 

feedback, tactile feedback, and a control group with no feedback. We 

analysed participants' sustained attention through correct responses and 

errors, using both statistical methods and the Hidden Markov Model 

(HMM) to track behavioural patterns. While the three feedback, groups 

showed no significant differences in correct responses, the auditory 

feedback group made the fewest errors, while the visual and tactile groups 

showed the most improvement over time in error reduction. HMM results 

suggested that feedback modalities did not significantly influence path 

choices between target and non-target cars but did affect the precision of 

those decisions. These findings highlight the potential of feedback in 

serious games to improve sustained attention, addressing a gap in the 

literature and offering insights for future cognitive training interventions. 

 
 

1. Introduction 

The effectiveness of computer games in enhancing cognitive functions, particularly in areas 

like attention, relies on various factors such as design elements, interactivity, and user 

engagement [1]. These features become even more critical when used for rehabilitation or 

cognitive enhancement, especially for improving attention [2] [3]. Attention, the ability to 

allocate mental resources efficiently, is a fundamental cognitive process studied extensively in 
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neuroscience and psychology [4]. It plays a key role in managing awareness, vigilance, and 

executive control and is essential for maintaining focus on relevant information while filtering 

out distractions [5] [6]. 

One promising approach for enhancing attention is through serious games, which are games 

designed not just for entertainment but for educational or rehabilitative purposes [7] [8]. These 

games simulate real-world scenarios and allow players to engage in activities where they can 

interactively apply and practice skills. Such environments provide unique opportunities to 

explore how sustained attention impacts how people process relevant and irrelevant 

information [9] [10]. Additionally, serious game adaptive learning systems can be tailored to 

individual learning needs, making them effective tools for cognitive enhancement  [11]. 

A crucial element in serious games is feedback, which guides users' actions and performance 

through various responses [12]. Feedback is typically categorised based on the sensory 

modality it uses: auditory, visual, or tactile [13]. Each feedback type has its characteristics, 

tactile feedback, for example, is less detailed but less disruptive than visual or auditory 

feedback, which may offer more information but can interrupt user focus [14] [15]. 

Understanding the delivery mode of feedback messages is essential, as it can influence how 

effectively users engage with the game and process information [16] [17]. 

Research has mostly focused on comparing auditory and visual feedback in serious games, 

often finding that while more disruptive, visual feedback tends to be more effective in fostering 

understanding and self-regulation [18] [19]. To understand how different feedback modalities 

impact cognitive engagement, we reviewed prior studies focusing on auditory, visual, and 

tactile feedback in serious games. This review emphasised peer-reviewed literature examining 

the suitability of feedback modalities for tasks needing sustained attention, providing a basis 

for our investigation. However, studies have been inconclusive about the ideal balance between 

these modalities, particularly regarding their long-term effects during extended training periods 

[20]. There's also a gap in research on how all three feedback modalities, auditory, visual, and 

tactile, affect performance in serious games. Previous studies have not fully explored whether 

feedback helps increase correct responses or decreases errors over time or how it interacts with 

the duration of training [21]. 

The choice of a racing game as the focus of this study is particularly relevant due to its 

ability to simulate real-world scenarios that require rapid decision-making and attentional 

control. Racing games demand high levels of cognitive engagement, as players must process 

multiple stimuli while managing their speed and trajectory. This dynamic environment 

provides a unique opportunity to examine how different feedback modalities influence 

cognitive functions such as spatial awareness and reaction times. Furthermore, the immediate 

feedback loops in racing games allow for real-time assessment of how auditory, visual, and 

tactile cues impact player behaviour and decision-making. As such, this study utilises a racing 

game to explore the effectiveness of various feedback modalities, highlighting their potential 

role in enhancing attentional processes in an engaging and interactive format.  

This study aims to address these gaps by investigating how different feedback modalities—

auditory, visual, and tactile—impact sustained attention and performance in a custom-designed 

Android-based serious game. Specifically, we focus on understanding the positive and negative 

effects of each feedback type during a task requiring sustained attention [22]. It is worth noting 

that negative feedback doesn’t always reduce confidence. In settings like leaderboards, falling 

behind can feel discouraging initially but often creates positive peer pressure, encouraging 

players to improve. This study examines these potential effects of negative feedback on 

sustained attention and performance.  

This study examines how auditory, visual, and tactile feedback modalities influence 

sustained attention during a 12-session training period in a serious game. Attention is 

operationalized as the ability to maintain focus on target cars (measured by correct 

responses/positive scores) and suppress distractions (measured by commission errors/negative 
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scores). By analyzing these metrics, we assess whether feedback type differentially enhances 

attentional control or reduces lapses. 

Given the exploratory nature of this investigation and the small sample size (n = 19), we 

employ Hidden Markov Models (HMM) to analyze the cognitive processes underlying 

feedback-driven decision-making. This approach is methodologically justified through three 

key evidence-based considerations: 

1. Longitudinal Small-Sample Precedent: Haines et al. [23] demonstrated that intensive 

repeated measures (e.g., 15 participants × sessions) can reliably model cognitive 

dynamics, establishing that observation density outweighs participant count for 

temporal analysis. Our design aligns with this approach, using 19 participants × 12 

sessions = 228 observations. 

2. HMM Robustness for Sparse Data: Visser & Speekenbrink [24] demonstrated that HMMs 

reliably recover transition parameters from limited behavioral observations, validating their 

use for small-sample studies. Their R package (depmixS4) has proven effective in 

extracting meaningful patterns from sparse datasets with observation densities comparable 

to ours (228 observations for 6 parameters = 38 observations/parameter), confirming 

methodological suitability for our n=19 sample. 

3. Cognitive Modeling Validation: Wang et al. [25] demonstrated the effectiveness of 

HMMs in modeling sequential patterns in dynamic environments, validating their 

utility for analyzing behavioral sequences in interactive tasks,  while Rabiner [26] 

established their theoretical foundation for analyzing hidden states from observable 

actions - precisely matching our gameplay paradigm. 

A custom-built Android car racing game was developed as the experimental tool for this 

study. The game incorporates key design elements, including clear goals (e.g., maximizing 

positive interactions), structured rules (e.g., avoiding non-target cars), and a feedback system 

integrated into the gameplay. These components form the backbone of the serious game, 

enabling controlled experiments on attentional engagement and feedback modalities  

The HMM is particularly well-suited for modelling sequential decision-making processes, 

allowing us to track how players' decisions evolve in response to different feedback types.  By 

inferring hidden cognitive states based on observable behaviours, HMM provides a deeper 

understanding of the underlying processes that guide players' interactions with the game. This 

probabilistic approach accounts for variability in how different feedback modalities impact 

attentional shifts, facilitating a nuanced analysis of feedback effectiveness. Ultimately, the use 

of HMM allows us to model the temporal dynamics of attention, offering insights into the 

immediate and sustained effects of auditory, visual, and tactile feedback on player 

performance. 

In this study, sustained attention is operationalized through behavioural indicators 

commonly used in attentional research. These include correct responses (positive scores), 

commission errors (negative scores), and reaction times, all of which reflect participants' ability 

to maintain focus on relevant stimuli and inhibit responses to distractions over time. 

Additionally, participants’ decision-making patterns, measured through transitions between 

bands containing target and non-target cars, were analysed using a Hidden Markov Model 

(HMM) to capture deeper cognitive shifts associated with attentional control.  

1.1 Conceptual Framework 

Attention is a critical cognitive function that allows individuals to process relevant 

information while filtering out distractions. In the context of serious games, attention is 

particularly important as players must navigate complex environments and make quick 

decisions based on feedback. 
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Our framework integrates three evidence-based components: 

1. Feedback modality effects [13][17][19], where auditory, visual, or tactile cues 

differentially guide attention; 

2. Attentional state modulation [5][6][27], where players shift between focused and 

distracted states, is well-documented in tasks requiring sustained attention. Esterman 

et al. [27] specifically traced these transitions in feedback-rich environments, providing 

a neural basis for how modalities like auditory cues stabilize attention;  and 

3. Longitudinal training efficacy [23], with repeated sessions reinforcing learning. 

 

Research shows: 

• Visual feedback enhances self-regulation despite disruption [4][5], 

• Auditory cues prompt rapid responses [6][7], and 

• Tactile inputs minimize interference [8][9]. 

 

These findings inform our experimental design (Figure 1), which tracks attention through 

target/non-target discrimination across 12 gameplay sessions, with performance metrics 

quantifying attentional efficiency. 

 

This study aims to explore these dynamics by addressing: 

• RQ1: How feedback modalities differentially impact sustained attention (correct 

responses/errors); 

• RQ2: Whether modalities differ in immediate vs. sustained effects; 

• RQ3: How HMM reveals latent decision patterns despite overt behavior. 

 

The framework specifically examines: 

• How modalities immediately vs. gradually affect attention (RQ1/RQ2) 

• Latent decision patterns revealed by HMM (RQ3) 

• Practical applications for serious game design 

 

By situating this research in established literature, we clarify feedback’s role in cognitive 

performance and identify applications for serious game design. 

 

the experimental design of the pilot study (Figure 1) illustrates our training protocol with 

12 sessions. Each 30-minute session contained three standardized phases: initiation interface, 

race scenario with modality-specific feedback (see Methods 2.5), and performance scoring. 

Feedback implementations were: auditory (tone cues), tactile (vibration patterns), or visual (on-

screen text), with conditions randomized across participants. 
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Figure 1. The experimental design of the pilot study 

In Section 2: Methods and Material, we detail the methodology employed to investigate the 

effects of feedback modality on sustained attention and performance. Section 2.1 describes the 

participant demographics, including age, gender, and health status, to contextualize the study 

sample. Section 2.2 outlines the experimental design, focusing on the 12-session training protocol, 

the custom-built Android car racing game, and the randomization of feedback conditions. Section 

2.3 explains the game mechanics and difficulty levels, emphasizing the simplified controls and the 

rationale behind the four-band track structure. Section 2.4 specifies the rules of the game, such as 

target and non-target car interactions, to clarify the attentional demands placed on participants. 

Section 2.5 elaborates on the three feedback modalities—auditory, visual, and tactile—and their 

implementation in the game, including the control group setup. Section 2.6 details the data 

measurement process, covering automated logging of touch inputs, scores, and movement 

transitions, which were critical for both statistical and sequential behavioral analysis. Section 2.7 

discusses the statistical methods, including ANOVA, used to evaluate performance metrics 

(positive/negative scores) across feedback types and training days. Finally, Section 2.8 introduces 

the Hidden Markov Model (HMM), explaining its application for analyzing latent decision-making 

patterns and transition probabilities between attentional states. 

Section 3 presents the results. Section 3.1 provides statistical findings, including comparisons 

of positive/negative scores across feedback groups and training days, supported by bar graphs and 

heatmaps. Section 3.2 reports the HMM analysis, visualizing transition probabilities and band-

selection tendencies, with figures illustrating state dynamics for each feedback group. 

Section 4 interprets these results, linking auditory feedback’s immediate error reduction to rapid 

cognitive adjustments, while visual/tactile feedback’s gradual effects are tied to higher 

informational load. The HMM’s null findings for strategic changes are contrasted with its utility in 

modeling precision improvements. 

Section 5 synthesizes the conclusions, highlighting implications for serious game design and 

proposing future research directions, such as multimodal feedback studies and clinical applications. 

To further clarify the theoretical structure linking feedback modality to attention and 

performance, Figure 2 presents a workflow diagram of modality-attention interaction within the 

context of serious gaming. This diagram synthesizes how sensory feedback influences transitions 
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between attentional states, modelled via a Hidden Markov Model (HMM), and how these states 

yield behavioural outcomes over time. This visual representation provides a bridge between the 

conceptual framework and the experimental design by highlighting the mechanisms underlying 

feedback-driven cognitive modulation. 

 

 

Figure 2. Modality-Attention Interaction in Serious Gaming. A conceptual diagram illustrating how 

different feedback modalities (auditory, visual, tactile, control) influence attentional states (focused vs. 

distracted) during gameplay, modelled using a Hidden Markov Model (HMM). Transitions between 

attentional states affect training outcomes, represented by positive and negative scores, with implications 

for cognitive enhancement and serious game design  

2. Methods and Material 

2.1 Participants 

Nineteen healthy female participants voluntarily took part in the study. All participants were 

right-handed and had a mean age of 22.36 ± 2.1 years. They reported no history of neurological 

disorders and were fully informed about the experiment's procedures, providing written consent 

prior to participation. Table 1 provides the descriptive statistics for the participants, including 

age, gender distribution, and years of education. 
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Table 1. Participant demographics. 

Variable 
 

Mean ± SD 

Number of Participants 19 

Gender Female 

Handedness Right-handed 

Age (years) 22.36 ± 2.1 

Neurological Disorders None reported 
 

 

While homogeneous samples are methodologically justified for initial controlled 

experiments [28], our results require validation in broader populations. 

2.2 Experimental Design 

To achieve the objectives of this research, a custom-built car racing game, developed on the 

Android platform, was used as the experimental tool. This game diverged from conventional 

racing titles by integrating specific rules to challenge sustained attention. 

The experiment consisted of 12 sessions over four weeks, with three sessions each week. 

Each session lasted 30 minutes. The initial training session took place on the first day, allowing 

participants to familiarise themselves with the game mechanics and performance evaluation. 

This introductory session lasted approximately 30 seconds to 1 minute, during which 

participants learned the fundamental rules. 

Participants controlled a green race car using both hands; the car’s dimensions were 

approximately 3/20 of the screen width and 1/5 of the screen height. 

The primary goal was to maximise the number of interactions with target cars (red) while 

minimising encounters with non-target cars (blue, black, and yellow). The appearance of these 

cars followed a random pattern, with equal frequency for each type, ensuring balanced 

gameplay experience across all participants. 

To monitor gameplay duration, a timer was implemented within the game. At the end of 

each 30-minute session, a notification prompted players to exit the game, displaying a message 

indicating that the time was complete. The game recorded performance data, which was saved 

as an Excel file on the participants' devices for subsequent analysis. 

Participants were allowed to choose any three days within the week and any time of day to 

engage in the game. They were encouraged to select times when they were adequately rested 

and able to maintain concentration throughout the session. This design aimed to create an 

optimal environment for improving capacities of sustained attention. 

 

2.3 Game mechanics and Difficulty levels 

The custom-built Android car racing game was developed using Android Studio and 

designed with simplified controls to maintain attentional focus on decision-making rather than 

motor coordination. The game featured three difficulty levels, which differed based on the 

speed of incoming vehicles. Participants selected their preferred difficulty level during the 

initial training session and continued with that same level throughout the 12 training sessions 

to ensure consistency in cognitive load across time. 

The game interface divided the screen vertically into two equal regions. To control the green 

car, participants used either thumb to tap on the left or right side of the screen: 

• A tap on the right side moved the car one band to the right (e.g., from Band 1 to 

Band 2). 

• A tap on the left side moved the car one band to the left (e.g., from Band 3 to Band 

2). 
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The track consisted of four horizontal bands, and the green car could switch bands in real-

time based on these touch inputs. This setup allowed for intuitive interaction and real -time 

responses, which were crucial for attentional engagement. 

2.4  Rules of the Game 

The game features specific rules designed to enhance attentional demands and create a 

challenging environment for participants. Players controlled the green car's movement across 

four bands of the track by touching the screen. The car could switch between these bands in 

response to user input. 

• Target Cars (Red): Successfully passing over a red car resulted in a positive score, 

rewarding players for making correct choices. 

• Non-Target Cars (Blue, Black, Yellow): Passing over these cars led to point 

deductions, encouraging players to avoid them to minimise errors. 

 

The game environment simulated real-life driving scenarios, where quick decision-making 

is essential. Players were tasked with navigating the bands, making rapid decisions on which 

cars to interact with while maintaining sustained attention on the overall goal of maximising 

positive encounters and minimising errors. 

2.5 Feedback Modalities 

Three distinct feedback modalities were incorporated into the game: auditory, visual, and 

tactile.  

• Visual feedback was delivered via on-screen text: the word “Positive” in green 

appeared when players successfully interacted with a target (red) car, while 

“Negative” in red was shown after encountering a non-target car. 

• Auditory feedback consisted of two distinct sound cues: a coin sound for 

correct responses and a car horn for incorrect ones, played immediately after 

the player's action. 

• Tactile feedback involved vibration patterns: a short triple vibration for correct 

interactions and a longer, more intense vibration for incorrect ones. 

This combination of feedback modalities was chosen to investigate their respective impacts 

on sustained attention and performance, facilitating a nuanced understanding of how different 

forms of feedback can enhance cognitive training in a gaming context. 

The control group was maintained in the same configuration as the experimental groups but 

did not receive any feedback. This consistent setup allowed us to isolate the effects of auditory, 

visual, and tactile feedback on performance, as the control group participants completed the 

tasks without external guidance. 

2.6 Data Measurement 

To evaluate attentional engagement and decision-making performance during gameplay, 

multiple metrics were systematically recorded using built-in data logging functions within the 

Android Studio environment. These metrics served as the primary dependent variables in the 

study and were used for both statistical and sequential behavioral analysis.  
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2.6.1 Automated Data Logging and File Structure 

The game was designed to automatically log all interaction data in real time and export it 

as an Excel (.xls) file after each session. Each file captured the player's full session history, 

including: 

 

• Screen touch coordinates 

• Time stamps for each input 

• The current and resulting band positions 

• The type of car (target or non-target) in each band during transitions 

• Score changes associated with each interaction 

 

These data allowed for the reconstruction of each player’s full decision sequence over the 

course of the game, enabling detailed behavioral modeling using statistical and probabilistic 

methods (e.g., HMM). 

2.6.2 Touch and Movement Control Tracking 

The game interface was designed for intuitive two-thumb control by dividing the screen 

vertically into two equal regions. Participants controlled the green race car by tapping on either 

side of the screen: 

 

• Tapping the right half moved the car one band to the right. 

• Tapping the left half moved it one band to the left. 

 

The track consisted of four parallel bands. Each tap resulted in an immediate lateral 

movement between adjacent bands, which was logged as a transition. These transitions were 

recorded along with the type of cars (target or non-target) present in both the origin and 

destination bands, allowing analysis of decision-making under attentional load. 

Each touch was time-stamped to the second, enabling the precise calculation of reaction 

times and decision latency. This helped evaluate how quickly participants responded to 

changing visual stimuli, especially as difficulty increased through faster car speeds at higher 

levels. 

In addition to logging transitions and timing, the system recorded the positions of all visible 

cars and the green player-controlled car at the moment of each touch. This allowed for 

synchronized tracking of participant responses within the evolving game environment and 

provided a detailed dataset for analyzing navigational patterns and attentional accuracy over 

time. 

2.6.3 Positive Score 

Positive scores were recorded when participants successfully interacted with target objects 

during the task, indicating successful attentional control and goal-directed behaviour. This 

metric is commonly used to assess correct responses in cognitive tasks that involve attentional 

engagement. In line with the research on attention systems [5], positive scores in this study 

reflect the participants' ability to effectively allocate mental resources to relevant stimuli and 

avoid distractions, demonstrating successful cognitive control.  

2.6.4 Negative Score 

Negative scores (or commission errors) were recorded when participants interacted with 

non-target objects during the task, indicating attentional lapses or failures in cognitive control. 

Commission errors reflect instances where participants mistakenly responded to stimuli that 

were not relevant to the task, representing impulsive actions or a failure to maintain attention.   
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The use of commission errors as a metric for measuring attention is well -established in 

cognitive research, particularly in tasks like the Sustained Attention to Response Task (SART). 

In SART, participants are required to withhold responses to non-target stimuli, and commission 

errors occur when they fail to do so, highlighting lapses in sustained attention and cognitive 

control. The relevance of commission errors has been revisited and strengthened by studies that 

link SART performance with daily-life cognitive failures, making this metric a valuable tool 

for understanding real-world attentional lapses [23]. 

By applying this metric in our study, we aim to capture the cognitive processes associated 

with attention lapses and impulsivity, similar to how SART tracks sustained attention. Negative 

scores provide insight into the participant's ability to filter out irrelevant stimuli and maintain 

focus during the task, particularly in the context of different feedback modalities. This 

approach allows us to evaluate how feedback influences not only correct responses but also the 

reduction of errors, further enhancing our understanding of its impact on attentional control. 

2.6.5 Movement Counters 

A series of counters tracked the number of movements between different bands of the road 

based on the colour of cars encountered. These counters recorded transitions from target to 

non-target cars and vice versa, helping to elucidate participants' decision-making processes. 

For example: 

• 1t-2t: Counts movements from band 1 with a target car to band 2 with a target car.  

• 1n-2t: Counts movements from band 1 with a non-target car to band 2 with a target 

car. 

• 3n-4n: Counts movements from band 3 with a non-target car to band 4 with a non-

target car. 

 

By analysing these diverse metrics, we aimed to develop a comprehensive understanding of 

how different feedback modalities influenced participants' attentional performance and 

decision-making during gameplay. The combination of scores, position data, and movement 

counters allowed for a nuanced analysis of cognitive engagement, providing valuable insights 

into the effectiveness of the serious game in enhancing attention. 

2.7 Statistical Analysis 

The data were subjected to Analysis of Variance (ANOVA) to evaluate significant 

differences between training days and feedback types concerning the recorded measures. 

Feedback type and training duration acted as independent variables, while positive and negative 

scores served as dependent variables. Statistical analyses were conducted at a significance level 

of 5%. The post hoc tests were repeated measures of two-way ANOVA, with matched values 

organized into sub-columns for clarity. 

2.8 Hidden Markov Model (HMM) 

The Hidden Markov Model (HMM) serves as a probabilistic framework for analysing the 

sequential data obtained from participant movements throughout the gameplay. In this study, 

the model was utilized to understand the decision-making processes of participants as they 

navigated the game and encountered various target and non-target cars. 

The model was constructed with: 

• 8 discrete states (4 bands × 2 car types: target/non-target) 

• Deterministic observations: Actual band transitions (e.g., Band 1 → Band 2) 
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Transition probabilities calculated using: 

𝑎𝑖𝑗 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑒 𝑖 𝑡𝑜 𝑗

𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠
 

 

The HMM is characterized by a set of hidden states, each representing a distinct band on 

the road where the cars are positioned. Specifically, there are four bands, with each band 

containing either a target (red car) or a non-target (blue, black, or yellow car). Participants' 

choices regarding which band to move to next were analysed through their recorded transitions 

between these states. 

To construct the HMM, we defined two types of states for each band: 

• Target States: These states are associated with the presence of a red car; which 

participants aim to interact with positively to gain points. 

• Non-Target States: These states correspond to the presence of blue, black, or yellow 

cars, which participants seek to avoid to minimize errors. 

• Transitions: All possible band shifts between these states, totalling 24 unique 

probabilities (Figures 7–10). 

 

In gameplay terms: 

• Target states represent focused attention (correctly prioritizing red cars) 

• Non-target states reflect attentional lapses (failing to avoid distractors) 

• Transitions model how feedback modalities reinforce or disrupt these states (e.g., 

auditory cues may increase transitions toward targets). 

 

The transitions between states were modelled as probabilistic events, where the likelihood 

of moving from one band to another depended on the current state and the feedback received. 

This allowed us to examine how different feedback modalities might influence participants' 

decisions regarding path selection. For example, a transition from Band 1 (non-target) → Band 

2 (target) would increment the 1n→2t counter, reflecting a recovery from distraction to focused 

attention. 

Data collected during gameplay included the frequency of transitions between bands based 

on the colour of the cars encountered, which was used to calculate the transition probabilities. 

For example, if a participant moved from a non-target band to a target band, the corresponding 

counter for that transition would increase, reflecting the participant's decision-making process. 

By analysing the transition probabilities, we aimed to determine whether the type of 

feedback provided (auditory, visual, or tactile) significantly affected the participants' choices 

in selecting their paths. The insights gained from the HMM analysis contribute to 

understanding the impact of feedback modalities on cognitive processes, specifically in the 

context of sustained attention and performance in serious games. 

This design aligns with established HMM applications in attention research [25], including 

Visser & Speekenbrink's [24] validation of HMMs for behavioral data with limited 

observations, where: 

• States map to measurable cognitive conditions (focused/distracted) 

• Transitions quantify feedback’s impact on attentional stability  

• The 4-band × 2-type structure captures task-specific demands 

 

Furthermore, the HMM analysis enables us to visualise the dynamics of participants' 

movements over time, offering a clear representation of how feedback influences behaviour in 

a gaming environment. This approach not only enhances our understanding of attentional 

mechanisms but also provides a methodological framework for future research exploring 

feedback effects in various task settings. 
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While alternative modelling approaches exist (e.g., reinforcement learning models or 

dynamic Bayesian networks), the HMM was uniquely suited for our research questions 

because:  

• It is state-transition architecture directly mirrors theoretical constructs of attentional 

shifting [5]. 

• It handles sparse observation sequences common in behavioural studies [24].  

• It has established validity for decoding latent cognitive states from discrete actions 

[26].  

Future studies comparing HMM performance against other modelling frameworks could 

provide additional methodological insights. 

 

 

Figure 3. Game interface used in the experiment and designation of different road sections or "bands" 

in the serious game, to tracking participants' choices and feedback during the task. 

3. Results 

In this part, the results of statistical analysis as well as HMM implementation are described. 

For statistical analysis, the effect of training time (first day in comparison to the last day) and 

feedback types on positive and negative scores were investigated. Performance metrics 

(positive/negative scores) were analysed as indicators of attentional engagement, where higher 

positive scores reflect improved focus on targets, and reduced negative scores indicate fewer 

attentional lapses. 

3.1 Statistical analysis 

Firstly, the statistical results are presented using plots and tables. Secondly, a total 

summation is presented dividing the results into three sections: feedback impact, time of 

training impact, and feedback and time of training combined. 

As shown in Figure 3, all four groups of our study approximately had the same range of 

positive scores at the beginning of training. After 12 days of training, the control group (i.e., 

the group with no feedback) witnessed a decline, while all three types of feedback groups l ed 
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to a slight improvement at the end of the last day compared to the first day. Among these three 

groups, the visual and tactile feedback groups showed a slightly higher improvement. However, 

these changes were not statistically significant (p > 0.05), indicating that while feedback may 

aid performance, the effect was not strong enough to be conclusive. 
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Figure 4. Bar graph comparing normalized positive scores (± SEM) on Day 1 and Day 12 of training 

across four feedback groups.  

Figure 4 compares negative scores (commission errors) across the four groups on the first 

and last days of training. Unlike positive scores, the four groups had different levels of negative 

scores on the first day of training. The value of negative scores decreased on the last day 

compared to the first day in all groups. However, this reduction in the visual and tactile 

feedback groups was higher than in the other groups, suggesting a more pronounced effect of 

these feedback modalities on error reduction. 
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Figure 5. Bar graph comparing normalized positive scores (± SEM) on Day 1 and Day 12 of 

training across four feedback groups.  
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To see the pattern of changes in positive and negative scores over all training days, Figures 

5 and 6 show a heatmap of scores over 12 days in four groups. The colour spectrum shown in 

Figure 5 contains the whole procedure of positive scores over 12 days of training. Positive 

scores in the control group experienced a reduction throughout the 12 days. Positive scores in 

the auditory feedback group experienced irregular changes over the 12 days of training and 

approximately stayed the same, while visual and tactile feedback groups had a significant 

increase in earning positive points, indicating a potential benefit of these feedback types over 

time.  
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Figure 6. Heat map of normalized positive scores across 12 days of training in four feedback groups. 

The colour spectrum shown in Figure 6 contains the whole procedure of negative scores 

over 12 training days. Negative scores in the control group experienced irregular changes over 

the 12 days and remained approximately the same. Visual and tactile feedback groups 

experienced a drastic drop in commission errors, while negative scores in the auditory feedback 

group slightly decreased over the total training days. The notable point is the level of negative 

points in the auditory feedback group, which is completely different from other groups from 

the first to the last session.  
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Figure 7. Heat map of normalized negative scores across 12 days of training in four feedback groups. 

Table 2 shows the statistical results of positive scores on the first and last day of training. 

As it shows, applying different feedbacks and training days does not have an effect on 

improving the achievement of more positive scores. Yet there is a meaningful relation (p < 

0.05) between days of training and different feedbacks, suggesting that although the feedback 

did not significantly enhance scores, time allowed for gradual learning. 

 
Table 2. Statistical significance of positive scores comparing Day 1 and Day 12 using a two-way ANOVA test.  

Source of Variation 
  

% of total variation P value P value 
summary 

Significant? 
 

Row Factor (Feedbacks) 0.0002450 0.9890 ns No 

Column Factor (Days of training) 
 

7.701 0.5457 ns No 

Row Factor x Column Factor 21.31 0.0082 ** Yes 

Subject 52.19 0.0274 * Yes 

 

Table 3 provides the statistical values of the comparison of negative scores (commission 

errors) on day 1 and day 12 of training. This result suggests that the effectiveness of types of 

feedback applied in the game is statistically significant (p < 0.01). The effectiveness of days of 

training in decreasing commission errors is not meaningful; however, the effects can be 

observed in the results. In addition, statistical significance is found between the days of training 

and the feedbacks.  

 

Table 3. Statistical significance of negative scores comparing Day 1 and Day 12 using a two-way ANOVA test.  

Source of Variation 
 

% of total variation P value P value 
summary 

Significant? 
 

Row Factor (Feedbacks) 6.303 0.0080 ** Yes 

Column Factor (Days of training) 
 

25.23 0.1068 ns No 

Row Factor x Column Factor 6.532 0.0526 ns No 

Subject 52.20 0.0015 ** Yes 
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In the following, Table 4 and 5 are provided to resent the statistical results of positive and 

negative scores through the entire days of training. 

Table 4 provides the statistics of positive scores over 12 days of training. As it can be seen, 

the impact of feedback and days of training is not statistically meaningful (p > 0.05). However, 

the impact can be seen in the results, especially in applying different feedbacks. On the other 

hand, the relationship between different feedbacks and training days is statistically significant 

(p < 0.05). 

 
Table 4. Statistical significance of positive scores across 12 days of training using a one-way ANOVA test, 

highlighting the significance levels for each feedback group over the training period. 

Source of Variation 
 

% of total 

variation 

P value P value 

summary 

Significant? 

 

Row Factor (Feedbacks) 2.335 0.2633 ns No 

Column Factor (Days of training) 
 

5.927 0.6851 ns No 

Row Factor x Column Factor 7.337 0.0800 ns No 

Subject 58.77 <0.0001 **** Yes 

 

Table 5 contains the statistics of the procedure of changes in the negative scores through all 

12 days of training. The effectiveness of all 12 sessions is statistically significant (p < 0.01). 

While the effect of feedback was observed in the decrease of commission errors, it is not 

statistically meaningful. At last, there was no connection between the days of training and types 

of feedback in the decrease of the negative score. 

 

Table 5.  Statistical significance of negative scores across 12 days of training using a one-way ANOVA test, 

highlighting the significance levels for each feedback group throughout the training period. 

Source of Variation 
 

% of total 

variation 

P value P value 

summary 

Significant? 

 

Row Factor (Feedbacks) 5.586 0.0549 ns No 

Column Factor (Days of training) 
 

25.81 0.0469 ns No 

Row Factor x Column Factor 4.039 0.8145 * Yes 

Subject 38.36 <0.0001 **** Yes 

 

3.1.1 Feedback impact 

On one side, the effect of the three types of feedback applied in the study showed that 

feedback can prevent the drawbacks of earning positive scores. The visual and tactile feedback 

groups presented slightly more progress in earning positive points. However, the impact of 

feedback on positive scores was not significant. 

On the other side, feedback showed better results in the reduction of negative scores. 

Statistical analysis pointed out that visual and tactile feedback had a drastic decrease in 

negative scores in comparison with the first day. Also, auditory feedback presented its quick 

impact. This group had a significant difference from other groups in commission errors from 

the start and stayed approximately the same until the end of the experiment. 

3.1.2 Time of training impact 

Time of training had no specific effect on increasing or decreasing positive and negative 

scores per se. Yet, small impacts can be observed in the reduction of commission errors. 

Although all groups improved over time, the auditory feedback group showed the most 

pronounced improvements, indicating that time allowed participants to refine their skills in 

responding to feedback. 
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3.1.3 Feedback and Time of Training Combined 

Comparing the first and last day of training, the statistical analysis presented that the 

influence of applying feedback and time of training collectively demonstrated a significant 

impact on earning more positive scores. On the other hand, it didn’t show any specific signs of 

reduction in commission errors. However, considering the whole 12 days of training, the 

collective impact of time and feedback showed significant effects on alleviating commission 

errors. 

 

 

Addressing our first research question (How do feedback modalities affect attention?), 

statistical analysis revealed: 

• Feedback type significantly impacted negative scores (commission errors; p =  0.008, 

Table 3), with auditory feedback showing the strongest reduction. 

• Positive scores were unaffected by feedback alone (p > 0.05, Table 2), but the 

interaction between feedback and training time was significant (p = 0.008), suggesting 

visual/tactile groups improved gradually (Figure 3). 

For our second question (Immediate vs. sustained impacts?): 

• Auditory feedback’s error reduction was evident early (Day 1 vs. Day 12, Figure 4), 

while visual/tactile groups required longer training (heatmaps, Figures 5–6). 

• Training duration alone had no main effect (p = 0.11, Table 3) but interacted with 

feedback (p = 0.008) 

 

 

Key statistical findings: 

• Auditory feedback reduced commission errors significantly vs. control (p = 0.008, 

Table 3), with the lowest baseline errors (Figure 4). 

• Visual/tactile feedback groups showed the steepest decline in errors over time (Figures 

5–6), though between-group differences were non-significant (p > 0.05). 

• Positive scores remained stable across feedback groups (p = 0.26, Table 2), but the 

control group declined (Figure 3). 

• Feedback × training time interaction was significant for both positive scores (p = 0.008) 

and errors (p = 0.053, Table 3), highlighting temporal dynamics. 

 

3.2 HMM Analysis 

A detailed examination of movements between four defined roads in four groups was 

conducted. The results suggested that the feedback had no significant effect on how the roads 

were chosen for the next move. The HMM analysis revealed no significant differences in 

transition probabilities between the four feedback groups. There were some visible differences 

between the proportion of different stages (e.g., 3n-2n and 3t-2t) in all four groups at the same 

time. This significance is based on situations that the algorithm provided for black, blue, and 

red car appearances. Due to that, the significant gaps in the proportion of stages are not related 

to the HMM and the purpose of this study. 

In total, by considering just destination in HMM, the visual and auditory feedback groups 

had a greater tendency to choose target roads compared to other groups. However, the 

difference was not significantly visible. Figures 7, 8, 9, and 10, respectively, show HMM 

extracted for auditory, visual, tactile, and control groups. In these figures, the numbers on the 

arrows show the probability of choosing the next state from the current state. Figure 11 shows 

diagram-based information on HMM for the four study groups. Results reported in this figure 

reveal that different types of feedback have no influence on the band selection and all three 

feedback groups and the control group followed approximately the same pattern of movement 
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facing the target and non-target cars. The difference between the probability of some transitions 

is because of the difference in the appearance of target and non-target cars. The probability of 

the appearance of the target car (red car) is one-third compared to the non-target car (blue, 

black, and yellow cars). 

The HMM analysis showed that while there were some behavioural differences between 

groups, these did not translate into significant changes in decision-making patterns. Auditory 

feedback appeared to encourage a tendency to move toward target cars; however, this tendency 

was not robust enough to demonstrate statistically significant effects in the transitions captured 

by the HMM. 

 

Figure 8. Hidden Markov Model (HMM) for auditory feedback. This figure illustrates the state 

transitions and probabilities associated with the auditory feedback condition, providing insights into the 

cognitive processes and decision-making patterns of participants during the task.    

 

Figure 9. Hidden Markov Model (HMM) for visual feedback. The numbers on the arrows indicate 

the probabilities of transitioning to the next state from the current state, illustrating the cognitive 

processes and decision-making patterns of participants when utilizing visual feedback during the task. 
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Figure 10. Hidden Markov Model (HMM) for tactile feedback. The numbers on the arrows represent 

the probabilities of transitioning to the next state from the current state, illustrating the cognitive 

processes and decision-making patterns of participants while utilizing tactile feedback during the task. 

 

Figure 11. Hidden Markov Model (HMM) for the control group. The numbers on the arrows indicate 

the probabilities of transitioning to the next state from the current state, illustrating the decision -making 

patterns of participants in the absence of feedback during the task. 

 

Due to the large number of probabilities to compare, all the probabilities of the four hidden 

Markov models are represented in the bar graph in Figure 11 As can be seen, the probability of 

choosing the next band in all four groups follows the same trend and does not depend on the 

feedback applied in the game. However, there are some slight differences between the groups 

in their choice of the next path. 
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Figure 12. Comparison of transition probability values in Hidden Markov Models (HMMs) extracted 

for the four study groups. The figure displays transition probabilities for each band, where: 1t = band 1 

with a target car, 1n = band 1 with a non-target car, 2t = band 2 with a target car, 2n = band 2 with a non-

target car, 3t = band 3 with a target car, 3n = band 3 with a non-target car, 4t = band 4 with a target car, 

and 4n = band 4 with a non-target car 

 

 

Figure 13. Percentage of participants choosing target versus non-target bands in their next move 

across the four groups. This figure illustrates the distribution of choices made by participants, highlighting 

differences in decision-making patterns among the auditory, visual, tactile, and control groups. 

Figure 12 shows that auditory and visual feedback group studies have more correct choices 

for their next move, respectively.  

The HMM analysis (Figures 7–11) directly tested whether feedback modalities influenced 

participants’ latent decision-making strategies (RQ3). While transition probabilities showed no 

significant differences between groups (p > 0.05), two subtle patterns emerged: 
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• Target Band Preference: Auditory/visual groups exhibited marginally higher 

transitions to target bands (Figure 12), suggesting feedback may implicitly sharpen 

attentional focus without altering overall path-selection strategies. 

• Precision vs. Strategy:  The HMM’s null findings align with our statistical results 

(Section 3.1), confirming that feedback primarily enhanced decision-

making precision (reducing errors) rather than restructuring strategic band-hopping 

sequences. This dissociation reflects HMMs’ sensitivity to macro-level behavioral 

patterns, which remained stable despite feedback interventions. Methodologically, 

Wang et al. [25] demonstrated the robustness of HMMs in modeling sequential patterns 

within dynamic systems, such as sports video recognition, where macro-level structural 

behaviors persist despite micro-level variations. Similarly, Rabiner [26] established 

HMMs’ theoretical utility for decoding latent states from observable actions in 

sequential tasks. Together, these studies validate that while micro-level metrics (e.g., 

reaction times, errors) may fluctuate with interventions like feedback, HMMs reliably 

capture persistent strategic frameworks in interactive tasks—consistent with our 

observation of unchanged transition probabilities between attentional states. 

 

4. Discussion 

Our research demonstrated a direct relationship between feedback delivery during gameplay 

and training duration, impacting both positive scores and error reduction. 

Additionally, our results confirmed the effect of feedback on functionality and completed 

the analysis outcome, specifically focusing on the effectiveness of decreasing commission 

errors. The effectiveness of time allocated to training was noticeable, with  different impacts 

observed across the three types of feedback. Results should be interpreted in context of the 

study's homogeneous sample (healthy young females). 

Auditory feedback demonstrated a strong early effect on sustained attention, as reflected by 

reduced commission errors. This suggests participants more quickly focused on task-relevant 

stimuli and inhibited incorrect responses without requiring extended training. This result aligns 

with prior research indicating that auditory stimuli are processed more quickly by the brain, 

leading to immediate cognitive adjustments. A study found that auditory attention allows for 

rapid responses to auditory cues, which supports the swift impact of auditory feedback 

observed in our study [29]. In contrast, visual feedback led to a reduction in commission errors, 

but only after a longer training duration. Previous studies showed that while visual feedback is 

often more informative, it can disrupt attentional processes, requiring more time for its benefits 

to emerge [22][30]. 

Tactile feedback, though less detailed than visual feedback, also required an extended period 

for participants to adjust. Aus der Wieschen et al. (2016) suggest that tactile feedback, due to 

its limited informational content, requires more time to be effective but is less disruptive than 

visual feedback [15]. At the end of the training period, a less significant decrease in commission 

errors was observed for tactile feedback compared to the auditory and visual feedback groups. 

This suggests that while tactile feedback has a lower cognitive load, its simpler nature may 

delay improvements in performance. 

These findings align with our operationalization of attention as the ability to maintain focus 

on targets (reflected in positive scores) while suppressing distractions (reflected in reduced 

commission errors), bridging gameplay performance to cognitive outcomes. 

Overall, the findings suggest that if sufficient training time is not provided, auditory 

feedback may produce better results than visual feedback, particularly in tasks requiring 

sustained attention and performance improvement. The greater disruption caused by visual 
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feedback likely necessitates more training time to achieve effectiveness in transmitting 

information, while auditory feedback's lower disruption facilitates faster progress.  

Our HMM model revealed that the three types of feedback had no significant impact on 

band selection. This result indicates that influencing path choices cannot rely solely on 

feedback messages that do not provide directional guidance. However, both the auditory and 

visual feedback groups exhibited a greater tendency to select target bands, suggesting that 

informative feedback related to movement direction could enhance decision-making. This is 

consistent with findings from a study that highlighted the role of feedback in guiding user 

behaviour during decision-making processes [31]. The use of HMM enabled us to model the 

sequential decision-making processes of players, offering deeper insights into how feedback 

influences their attentional shifts and performance over time. 

The HMM results (Section 3.2) complement our statistical findings by revealing a 

dissociation between feedback’s effects on performance (reduced errors) and decision-

making (unchanged band transitions). This implies that auditory/visual feedback enhanced 

participants’ ability to discriminate targets (attentional focus) but did not alter their macro -

level navigation strategy—a nuance consistent with attentional control theory [5]. 

For serious games targeting strategic attention shifts, future designs might integrate 

directional feedback (e.g., spatialized auditory cues or visual arrows) to explicitly guide path 

selection, as non-directional feedback alone may insufficiently reshape decision habits. 

These findings not only provide insights into how to utilize each type of feedback effectively 

in serious games but also suggest avenues for further research into the effects of feedback 

combinations. The results are based on a small sample of 19 participants, indicating that future 

research with larger datasets could yield more robust conclusions. While this limitation has not 

impacted the primary outcomes of the study, future work should focus on exploring the effects 

of various feedback combinations on individual performance in serious games, particularly in 

educational settings where serious games are used as cognitive training tools. In addition, while 

the HMM provided theoretically grounded insights into attentional dynamics, future research 

could benefit from comparing its performance against alternative modelling approaches (e.g., 

reinforcement learning models or recurrent neural networks) to identify optimal analytical 

frameworks for feedback modality research. 

Furthermore, the implications of these findings extend to educational contexts, as 

understanding how feedback influences attention can inform the design of serious games aimed 

at enhancing learning outcomes. By leveraging the insights gained from this research, educators 

and game designers can create more effective serious games that promote sustained attention 

and improve cognitive functions among learners. 

Our findings are based on a homogeneous sample of young adult females, which limits 

generalizability. Sex differences in cognitive processing are well-documented [32]and 

attentional capacity varies significantly across the lifespan [33]. Future studies should include 

gender-balanced, age-diverse, and clinical populations (e.g., ADHD, where feedback modality 

effects differ; [34]). 

5. Conclusions 

Attention plays a fundamental role in cognitive functioning, and serious games present a 

valuable platform for enhancing attentional capabilities through carefully designed feedback 

systems. This study examined how different feedback modalities - auditory, visual, and tactile 

- influence performance in an attention-demanding racing game over a 12-session training 

period. 

The findings reveal several key insights about feedback's role in attentional training. 

While all feedback types helped maintain performance levels, they demonstrated distinct 
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temporal patterns in their effects. Auditory feedback showed immediate benefits in reducing 

errors, suggesting its effectiveness for rapid response tasks. In contrast, visual and tactile 

feedback led to more gradual but sustained improvements, indicating their potential for long-

term attentional training. Importantly, feedback modalities influenced the precision of 

decisions rather than the strategic choices between targets and non-targets. Notably, HMM 

analysis revealed that feedback modalities improved precision (reducing errors) without 

significantly altering strategic choices (band transitions), underscoring the need for targeted 

feedback designs to influence higher-level decision-making. 

These results carry significant implications for serious game design and cognitive training 

applications. Game developers and educators should carefully consider the temporal dynamics 

of different feedback types when designing training programs. Auditory feedback may be most 

suitable for tasks requiring quick reactions, while visual and tactile feedback could be preferred 

for developing sustained attention. The findings also highlight the potential of serious games 

as customizable training tools that can adapt feedback modalities to specific cognitive 

objectives. 

Future research directions emerging from this study include investigating optimal 

combinations of feedback modalities, examining longer-term training effects, and exploring 

applications in clinical populations with attention deficits. Additionally, studies  with larger 

sample sizes could further validate these findings and potentially reveal more nuanced patterns 

of interaction between feedback types and individual differences in attentional processing.  

Also, Methodologically, comparative studies examining different computational modelling 

approaches would help establish best practices for analysing attentional processes in serious 

games. 

By advancing our understanding of how different feedback modalities shape attentional 

performance, this research contributes to the development of more effective serious games for 

cognitive enhancement. The findings provide a foundation for designing targeted interventions 

that can be tailored to specific training goals and user needs in both educational and therapeutic 

contexts. 

Critical next steps include: (1) replication in larger, gender-balanced samples to assess 

potential sex differences in feedback effectiveness; (2) extension to broader age ranges to 

examine developmental trajectories; and (3) application in clinical populations with attention 

deficits (e.g., ADHD) to test therapeutic potential. 
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