Full-body Movement in Numerical Trainings: A Pilot Study with an Interactive Whiteboard


  • Ursula Fischer Knowledge Media Research Center Tuebingen
  • Korbinian Moeller Leibniz-Institut fuer Wissensmedien, Tuebingen
  • Stefan Huber Leibniz-Institut fuer Wissensmedien, Tuebingen
  • Ulrike Cress
  • Hans-Christoph Nuerk University of Tuebingen,




elementary education, numerical processing, spatial-numerical association, embodied cognition, media in education


In this pilot study, we introduce an effective spatial-numerical training to improve children’s arithmetic abilities. We designed this training based on previous successful trainings of spatial-numerical associations (such as number line estimation) and introduced a full-body response movement. Children responded to a number line estimation task presented on an interactive whiteboard by moving their whole body to the left or right. In a pilot study with a small group of children (total sample size N = 27), this experimental training was compared to two control trainings, one training the same task without the full-body movement and one training a different task with full-body movement. The experimental training led to significant improvement in all dependent measures and was most effective in enhancing performance in a spatial-numerical task. Furthermore, full-body movement helped children maintain their performance level in multi-digit addition. We conclude that full-body movement can enhance the efficiency of numerical trainings, which could also be successfully utilized in serious games and incorporated into the classroom.


[1] Bynner, J., Parsons, S., Does Numeracy Matter? Evidence from the National Child Development Study on the impact of poor numeracy on adult life, London: The Basic Skills Agency, 1997.
[2] Parsons, S., Bynner, J., Does Numeracy Matter More?, London: National Research and Development Centre for Adult Literacy and Numeracy, 2005.
[3] Bynner, J., Parsons, S., New Light on Literacy and Numeracy, NRDC National Research and Development Centre for adult literacy and numeracy, 2006.
[4] Gross, J., Hudson, C., Price, D., The Long Term Costs of Numeracy Difficulties, London: Every Child a Chance Trust and KPMG, 2009.
[5] Butterworth, B., Varma, S., Laurillard, D., Dyscalculia: from brain to education., Science, Vol. 332, Nr. 6033, 1049–1053, 2011. doi:10.1126/science.1201536
[6] Wilson, A.J., Revkin, S.K., Cohen, D., Cohen, L., Dehaene, S., An open trial assessment of “The Number Race”, an adaptive computer game for remediation of dyscalculia., Behavioral and brain functions?: BBF, Vol. 2, 20, 2006. doi:10.1186/1744-9081-2-20
[7] Räsänen, P., Salminen, J., Wilson, A.J., Aunio, P., Dehaene, S., Computer-assisted intervention for children with low numeracy skills, Cognitive development, Vol. 24, 450–472, 2009. doi:10.1016/j.cogdev.2009.09.003
[8] Kroesbergen, E.H., Van Luit, J.E.H.H., Mathematics Interventions for Children with Special Educational Needs: A Meta-Analysis, Remedial and Special Education, Vol. 24, Nr. 2, 97–114, 2003. doi:10.1177/07419325030240020501
[9] Xin, Y.P., Jitendra, A.K., The effects of instruction in solving mathematical word problems for students with learning problems: A meta-analysis, The Journal of Special Education, Vol. 32, Nr. 4, 207–225, 1999. doi:10.1177/002246699903200402
[10] Booth, J.L., Siegler, R.S., Numerical magnitude representations influence arithmetic learning, Child Development, Vol. 79, Nr. 4, 1016–1031, 2008. doi:10.1111/j.1467-8624.2008.01173.x
[11] Holloway, I.D., Ansari, D., Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement, Journal of Experimental Child Psychology, 2009. doi:10.1016/j.jecp.2008.04.001
[12] Moeller, K., Pixner, S., Zuber, J., Kaufmann, L., Nuerk, H.-C., Early place-value understanding as a precursor for later arithmetic performance - A longitudinal study on numerical development, Research in Developmental Disabilities, Vol. 32, Nr. 5, 1837–1851, 2011. doi:10.1016/j.ridd.2011.03.012
[13] Krajewski, K., Nieding, G., Schneider, W., Kurz- und langfristige Effekte mathematischer Frühförderung im Kindergarten durch das Programm „Mengen, zählen, Zahlen”, Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, Vol. 40, Nr. 3, 135–146, 2008. doi:10.1026/0049-8637.40.3.135
[14] Ramani, G.B., Siegler, R.S., Reducing the gap in numerical knowledge between low- and middle-income preschoolers, Journal of Applied Developmental Psychology, Vol. 32, Nr. 3, 146–159, 2011. doi:10.1016/j.appdev.2011.02.005
[15] Fischer, U., Moeller, K., Bientzle, M., Cress, U., Nuerk, H.-C., Sensori-motor spatial training of number magnitude representation, Psychonomic bulletin & review, Vol. 18, Nr. 1, 177–183, 2011. doi:10.3758/s13423-010-0031-3
[16] Link, T., Moeller, K., Huber, S., Fischer, U., Nuerk, H.-C., Walk the number line – An embodied training of numerical concepts, Trends in Neuroscience and Education, Vol. 2, Nr. 2, 74–84, 2013. doi:10.1016/j.tine.2013.06.005
[17] Dehaene, S., Bossini, S., Giraux, P., The mental representation of parity and number magnitude, Journal of Experimental Psychology: General, Vol. 122, Nr. 3, 371–396, 1993. doi:10.1037/0096-3445.122.3.371
[18] Opfer, J.E., Furlong, E.E., How numbers bias preschoolers’ spatial search, Journal of Cross-Cultural Psychology, Vol. 42, Nr. 4, 682–695, 2011. doi:10.1177/0022022111406098
[19] Siegler, R.R.S., Opfer, J.J.E., The development of numerical estimation: Evidence for multiple representations of numerical quantity, Psychological science, Vol. 14, Nr. 3, 237–243, 2003. doi:10.1111/1467-9280.02438
[20] Barth, H.C., Paladino, A.M., The development of numerical estimation: Evidence against a representational shift, Developmental science, Vol. 14, Nr. 1, 125–135, 2011. doi:10.1111/j.1467-7687.2010.00962.x
[21] Link, T., Huber, S., Nuerk, H.-C., Moeller, K., Unbounding the mental number line - new evidence on children’s spatial representation of numbers, Frontiers in Psychology, Vol. 4:1021, 2014. doi:10.3389/fpsyg.2013.01021
[22] Link, T., Nuerk, H.-C., Moeller, K., On the relation between the mental number line and arithmetic competencies, The quarterly journal of experimental psychology, Vol. 67, Nr. 8, 1597–1613, 2014. doi:10.1080/17470218.2014.892517
[23] Moeller, K., Fischer, U., Nuerk, H.-C., Cress, U., Computers in mathematics education – Training the mental number line, Computers in Human Behavior, Vol. 48, 597–607, 2015. doi:10.1016/j.chb.2015.01.048
[24] Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., et al., Mental number line training in children with developmental dyscalculia, NeuroImage, Vol. 57, Nr. 3, 782–95, 2011. doi:10.1016/j.neuroimage.2011.01.070
[25] Käser, T., Baschera, G., Kohn, J., Kucian, K., Richtmann, V., Grond, U., et al., Design and evaluation of the computer-based training program Calcularis for enhancing numerical cognition, Frontiers in psychology, Vol. 4, 489, 2013. doi:10.3389/fpsyg.2013.00489
[26] Fischer, U., Link, T., Cress, U., Nuerk, H.-C., Moeller, K., Math with the dance mat: On the benefits of embodied numerical training approaches, In: Lee V, editor, Learning Technologies and the Body: Integration and Implementation in Formal and Informal Learning Environments, New York: Routledge, p. 149–163, 2015.
[27] Moeller, K., Fischer, U., Link, T., Wasner, M., Huber, S., Cress, U., et al., Learning and development of embodied numerosity., Cognitive processing, Vol. 13, Nr. Suppl 1, S271–S274, 2012. doi:10.1007/s10339-012-0457-9
[28] Butterworth, B., The Mathematical Brain, London: Macmillan, 1999.
[29] Fuson, K.C., Children’s counting and concepts of number, New York: Springer, 1988.
[30] Domahs, F., Moeller, K., Huber, S., Willmes, K., Nuerk, H.-C., Embodied numerosity: Implicit hand-based representations influence symbolic number processing across cultures, Cognition, Vol. 116, Nr. 2, 251–266, 2010. doi:10.1016/j.cognition.2010.05.007
[31] Fischer, M.H., Finger counting habits modulate spatial-numerical associations, Cortex, Vol. 44, Nr. 4, 386–392, 2008. doi:10.1016/j.cortex.2007.08.004
[32] Wilson, M., Six views of embodied cognition., Psychonomic bulletin & review, Vol. 9, Nr. 4, 625–636, 2002. doi:10.3758/BF03196322
[33] Shaki, S., Fischer, M.H., Random walks on the mental number line, Experimental brain research, Vol. 232, Nr. 1, 43–49, 2014. doi:10.1007/s00221-013-3718-7
[34] Giannakos, M.N., Enjoy and learn with educational games: Examining factors affecting learning performance, Computers and Education, Vol. 68, 429–439, 2013. doi:10.1016/j.compedu.2013.06.005
[35] Resnick, L., Resnick, D., Assessing the thinking curriculum: New tools for educational reform, In: Gilford BR, O’Connor MC, editors, Changing assessments, Boston: Kluwer Academic, p. 37–75, 1992.
[36] Erhel, S., Jamet, E., Digital game-based learning: Impact of instructions and feedback on motivation and learning effectiveness, Computers and Education, Vol. 67, 156–167, 2013. doi:10.1016/j.compedu.2013.02.019
[37] Corbalan, G., Kester, L., van Merriënboer, J.J.G., Dynamic task selection: Effects of feedback and learner control on efficiency and motivation, Learning and Instruction, Vol. 19, Nr. 6, 455–465, 2009. doi:10.1016/j.learninstruc.2008.07.002
[38] Abelson, R.P., Prentice, D.A., Contrast tests of interaction hypothesis, Psychological Methods, Vol. 2, Nr. 4, 315–328, 1997. doi:10.1037/1082-989X.2.4.315
[39] Niedenthal, P.M., Brauer, M., Robin, L., Innes-Ker, A.H., Adult attachment and the perception of facial expression of emotion, Journal of personality and social psychology, Vol. 82, Nr. 3, 419–433, 2002. doi:10.1037//0022-3514.82.3.419
[40] Torff, B., Tirotta, R., Interactive whiteboards produce small gains in elementary students’ self-reported motivation in mathematics, Computers and Education, Vol. 54, Nr. 2, 379–383, 2010. doi:10.1016/j.compedu.2009.08.019
[41] Jang, S.J., Integrating the interactive whiteboard and peer coaching to develop the TPACK of secondary science teachers, Computers and Education, Vol. 55, Nr. 4, 1744–1751, 2010. doi:10.1016/j.compedu.2010.07.020
[42] Kiili, K., Perttula, P.T.A., Exerbraining for Schools: Combining Body and Brain Training, Procedia Computer Science, Vol. 15, Nr. 0, 163–173, 2012. doi:10.1016/j.procs.2012.10.068
[43] Dehaene, S., Cohen, L., Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic, Cortex, Vol. 33, Nr. 2, 219–250, 1997. doi:10.1016/S0010-9452(08)70002-9
[44] Susi, T., Johannesson, M., Backlund, P., Serious Games – An Overview, University of Skövde, Sweden, 2007
[45] Kiili, K., De Freitas, S., Arnab, S., Lainema, T., The design principles for flow experience in educational games, Procedia Computer Science, Vol. 15, Nr. DECEMBER, 78–91, 2012. doi:10.1016/j.procs.2012.10.060
[46] Corti, K., Games-based Learning; a serious business application, PIXELearning Limited. 2006.
[47] Kiili, K., Devlin, K., Perttula, T., Tuomi, P., Lindstedt, A., Using video games to combine learning and assessment in mathematics education. International Journal of Serious Games, Vol. 2, Nr. 4, December 2015.




How to Cite

Fischer, U., Moeller, K., Huber, S., Cress, U., & Nuerk, H.-C. (2015). Full-body Movement in Numerical Trainings: A Pilot Study with an Interactive Whiteboard. International Journal of Serious Games, 2(4). https://doi.org/10.17083/ijsg.v2i4.93



Special Issue on Digital Games for Learning Mathematics