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DOI: 10.17083/yj7g5p07 participants across four summer camps using Ordered Network Analysis

(ONA) and k-means clustering to identify player archetypes emerging from
student actions. We then examine how these archetypes relate to learning
outcomes and motivational factors. Statistical tests reveal significant
differences in in-game actions across archetypes and correlations between
player behaviors and learning outcomes. These findings contribute to the
design of serious educational games by increasing understanding of how to
optimize experiences and enhance science engagement for learners with
differing playing styles.

1. Introduction

In well-designed serious games for education, students actively engage with skills, knowledge,
identities, values, and practices that contribute to desirable learning outcomes or serve as
foundational steps toward educational success [1], [2]. Over the past decade, several meta-
analyses and systematic reviews have presented increasingly consistent evidence that games
can support student learning [3], [4], [5], [6], [7], [8], often finding the strongest effects on
cognitive outcomes (e.g., knowledge acquisition, concept mastery, and test performance), but
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also finding improvements to affective and motivational outcomes within the game’s specific
domain, as well as gains in social skills and teamwork [3], [4], [5].

Despite the promising potential of video games for learning, research on who benefits the
most—and why—remains limited. Many studies in this area approach the learners in the
experimental group as a single population, which is useful for investigating the general impact
of games on learning outcomes, but can obscure important differences in motivation, play style,
prior knowledge, game literacy, and specific in-game behaviors (see discussion in [9]). These
factors can substantially influence students’ learning outcomes. Although some studies have
examined differences based on traditional demographic categories such as race and gender
(e.g., [10], [11], [12], [13]), these factors alone do not capture students’ situational interest,
prior knowledge, or specific in-game behaviors—all of which may significantly influence
learning outcomes (e.g., [14], [15]). Understanding these nuanced differences is critical for
designing educational games that adapt to diverse learner and player profiles, optimize all
learners’ engagement, and ensure that the intended learning benefits are equitably realized.

Research in human-computer interaction (HCI) and video games has introduced various
player typologies to explain behavior based on the motivational factors that drive gameplay
[16],[17], [18], [19]. These typologies help distinguish whether a player is primarily motivated
by social interaction [16], the challenge of completing a game [19], the desire to explore a
virtual world or immersive narrative [16], or the enjoyment of learning new knowledge
presented in the game [17]. Such motivations shape how students engage with a game and may
predispose them to benefit more from certain types of learning opportunities.

Recent studies have applied data mining techniques to identify player archetypes in
educational contexts [15], [20], [21], using methods like Epistemic Network Analysis (ENA;
[22]) and clustering to both quantify sequences of student actions during gameplay and uncover
distinct archetypes in a science inquiry game [15]. These analyses revealed meaningful
associations between player archetypes, interest levels, and post-test performance, highlighting
the potential of archetype-based approaches to enhance educational game design.

Building on the need to better understand how individual differences in gameplay relate to
student interest and learning, in this study, we investigate player archetypes within the WHIMC
project—a Minecraft-based serious game where students explore scientifically accurate worlds
to investigate hypothetical astronomy questions. Specifically, we address the following
research questions: (RQ1) What player archetypes emerge within WHIMC? (RQ2) How are
these archetypes associated with students’ interest measures and learning gains? (RQ3) How
do our findings align with prior research on player archetypes in serious educational games?
This work seeks to contribute to the growing literature analyzing relationships between student
interest and in-game behaviors. By explicitly linking player archetypes to both interest and
learning outcomes, this work aims to advance the growing literature on the interplay between
student engagement, in-game behaviors, and learning in educational game contexts.

2. Related Work

21 Frameworks of Player Typology

Research has explored how players engage with video games, generating typologies that
categorize player motivations [16], [17], [19]. These frameworks aim to provide a structured
understanding of why individuals play games and how different motivational factors shape
their interactions (see Figure 1).

One of the earliest and most influential models is Bartle’s [16] player typology, originally
developed for multi-user dungeon games (MUDs). Based on player motivations, Bartle
identified four archetypes: ACHIEVERS, who focus on in-game goals, progression, and mastery,
often motivated by points and rewards; EXPLORERS, who seek discovery and experimentation,
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engaging deeply with game mechanics, lore, and hidden elements; SOCIALIZERS, who prioritize
interaction and relationship-building, often participating in cooperative play and
communication; and KILLERS, who thrive on competition and dominance, favoring player-
versus-player activities and skill demonstrations. Expanding on Bartle’s framework, Yee [19],
[23] proposed ten specific motivational factors that influence player behavior (e.g.,
competition, teamwork, discovery, and role-playing). Yee used confirmatory factor analysis
across multiple MUDs to identify three motivational categories: ACHIEVEMENT, encompassing
both ACHIEVERS and KILLERS due to their shared focus on progression and competition;
IMMERSION, which includes role-playing and exploration (aligned with Bartle’s EXPLORERS);
and SOCIALIZING, corresponding to Bartle’s SOCIALIZERS.
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Figure 1. Summary of multiple player typologies mapped to the axes from Bartle’s [16] foundational
categorization. Black font and red font distinguish between motivational archetypes proposed in HCI
frameworks [16], [17], [18], [19] and behavioral archetypes (e.g., differences in in-game actions) identified
in serious educational games [15], [21]. Solid ellipses represent Yee’s [19], [23] three core motivational
archetypes. Gray ellipses with dotted lines are labeled in boldface with Tondello et al.’s [18] six
motivational archetypes. Rounded rectangles align conceptually similar behavioral archetypes: red
shading indicates students who appear disengaged from the game; purple represents students who
explore and show moderate engagement, though not necessarily in science-related activities; blue shows
students who repeatedly engage with specific game mechanics and achieve game goals while often
performing science-related actions (with the lightest blue corresponding to students primarily focused on
in-game achievements); and darkest blue represents the intersection of the purple and light blue groups.

Although Bartle’s and Yee’s frameworks offer valuable insights into player behaviors and
motivations, these frameworks have been criticized for oversimplifying motivations and
assuming broad generalizability, despite being developed primarily from data on MUD players.
To address these limitations, researchers have proposed alternative typologies that extend to
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other game genres and capture a broader range of motivations. For instance, Kahn et al. [17]
conducted a confirmatory factor analysis of players of multiplayer online battle arena (MOBA)
and massively multiplayer online (MMO) games, generating a six-category typology that
introduced four new player archetypes that can still be mapped into Bartle’s and Yee’s
frameworks. ESCAPISTS, who play to relax and disconnect, and STORY DRIVEN players, who
are deeply engaged in the game’s narrative, resemble Bartle’s EXPLORERS through their high
immersion, but extend this category by differentiating between these two different drivers for
exploration and engagement. COMPLETIONISTS, motivated by mastering game mechanics, and
SMARTY PANTS players, who see games as intellectual challenges that promote learning and
cognitive growth (e.g., puzzle game players seeking to sharpen analytical skills), align with
Bartle’s ACHIEVERS but are more clearly driven by intrinsic motivation and a desire for high-
level challenge. Similarly, Tondello et al. [18] expanded previous models with the HEXAD
archetypes, adding categories such as PHILANTHROPISTS, who enjoy helping others and sharing
knowledge, and DISRUPTORS, who take pleasure in subverting game mechanics and exploring
alternative ways to play, often disturbing other players when realizing these goals. These
categories parallel Bartle’s ACHIEVERS or KILLERS but specify distinct motivators such as
altruism and a desire to test a system’s boundaries, thereby refining the broader original
categories. This typology was validated through survey data and has been widely used in
gamification and serious game research.

Players’ underlying motivations can offer valuable insights into how they engage with
serious games. In educational games, in particular, some students may align more naturally
with certain learning objectives depending on their motivations for playing. For example,
SOCIALIZERS and PHILANTHROPISTS may benefit most from collaboration and interaction,
strengthening teamwork skills. EXPLORERS, driven by curiosity about the virtual world or
narrative, may develop greater motivation or interest in the academic content embedded in the
storyline. Meanwhile, ACHIEVERS and SMARTY PANTS, focused on progression and intellectual
challenge, may maximize cognitive outcomes by striving for mastery. Understanding how
player archetypes relate to learning outcomes can inform the design of more effective
educational games and interventions—allowing experiences to be tailored to students’ diverse
traits and leveraging intrinsic motivation to improve learning.

2.2 Logs Analysis in Serious Educational Games
Another approach to clustering students involves analyzing the specific actions they take within
the game. This shifts the concept of archetypes from a motivational to a behavioral perspective
(the definition adopted in this study) based on the idea that similar in-game behaviors may
achieve similar learning outcomes, regardless of what motivated those actions. For instance, in
a game designed to foster interest through interactions with non-playable characters (NPCs),
EXPLORERS, SOCIALIZERS, and ACHIEVERS may all benefit from these interactions, even if
their initial motivations differ. To give another example, if disciplinary content is delivered
through optional in-game notes that are not required for progression or social interaction,
SOCIALIZERS and ACHIEVERS may overlook them, missing valuable learning opportunities.
Focusing on specific in-game actions opens two valuable avenues for research. First,
researchers can examine associations between specific actions and learning gains. Multiple
studies have explored these relationships using techniques such as correlation mining, sequence
analysis, and clustering analysis (e.g., [24], [25], [26], [27]). For example, Novolsetseva et al.
[27] identified multiple behavioral clusters based on students’ in-game actions. They found
that students who appeared to develop a strategy frequently inspected and analyzed in-game
supportive materials, and engaged in a higher number of purposeful actions—behaviors
resembling those of systematic EXPLORERS. These students tended to achieve better outcomes
than those who lacked a clear strategy or explored less.
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Kang et al. [24] also used clustering to investigate how performance relates to the similarity
between an student’s actions and those of their group members. They showed that students
whose behaviors were either too similar (like Bartle’s and Tondello et al.’s SOCIALIZERS) or
too dissimilar from their peers (like Tondello et al.’s DISRUPTORS or Bartle’s KILLERS)
performed more poorly, whereas those who had moderate similarity to their peers (like
Tondello et al.’s PHILANTHROPISTS) achieved greater gains. One possible explanation is that
moderate similarity in behaviors allows students to collaborate productively—sharing enough
common approaches to coordinate effectively—while still maintaining diverse strategies that
promote exploration and complementary skills. In contrast, very high similarity may lead to
redundancy or over-reliance, whereas very low similarity can result in misalignment or
unproductive competition. Although these studies did not explicitly reference player
typologies, their findings indicate that identifying behavioral archetypes and the in-game
behaviors that define them may help explain variations in learning outcomes.

The second avenue of research that emerges from analyzing specific in-game actions
involves understanding why these behaviors develop. In addition to the motivational typologies
described above, other factors that may shape gameplay behavior include student interest in
the game’s topic or mechanics [25]; prior knowledge of the subject matter [28], [29]; skills
with the game’s mechanics [15], [30]; self-efficacy [31], [32]; and self-regulation [33]. For
instance, Nasiar et al. [28] found that students with lower prior knowledge of the subject
explored less and deviated more from the expected sequence of in-game actions than their more
knowledgeable peers. If differences in in-game actions are associated with multiple causes
(e.g., both motivational typologies and prior knowledge), then analyzing such actions directly
could be beneficial.

2.3 Archetypes in Serious Educational Games

Parallels can be drawn between player typology frameworks—which emphasize motivational
factors—and students’ in-game actions in serious educational games, both of which may
influence learning outcomes. However, few studies have attempted to directly distill player
archetypes from behavioral patterns or study how archetypes relate to educational outcomes.
One early attempt was made by Slater et al. [21], who used clustering analysis to identify
distinct player archetypes based on in-game actions in a single-player, level-based game. Their
analysis, which conceptualized archetypes the same way we do in this paper, revealed three
clear player archetypes: ACHIEVERS, EXPLORERS, and DISENGAGED, each associated with
different levels of in-game achievement (the latter showing low levels of both immersion and
achievement; see Figure 1). Similarly, Swanson et al. [20] employed clustering to identify
archetypes in a single player, resource management game, uncovering groups such as
CAPITALISTS, PLANNERS, and INACTIVES, which closely align with Slater et al.’s ACHIEVERS,
EXPLORERS, and DISENGAGED categories. However, neither study included external measures
of learning or interest, limiting their ability to assess how these archetypes relate to broader
educational outcomes.

More recently, in the context of an open world, single player scientific inquiry serious game,
Zambrano et al. [15] proposed a combined approach using Clustering Analysis and Ordered
Network Analysis (ONA; [34])—a technique derived from Epistemic Network Analysis (ENA;
[22]) that quantifies ordered transitions between consecutive actions or codes. In the context
of an open-world, role-playing STEM game, Zambrano et al. applied these methods to log data
capturing students’ in-game interactions. Their analysis identified four distinct player
archetypes: ROAMERS, who spent extended time outdoors, engaging only in movement without
performing additional actions (an indicator of disengagement); CONVERSERS, who held long
conversations with NPCs but did not engage in science-related tasks; SCANNERS, who
concentrated on solving the game’s central mystery by actively testing hypotheses; and
WORKSHEET USERS, who systematically documented their findings throughout gameplay.
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These groups differed not only in their gameplay behaviors but also in levels of situational
interest, self-efficacy, perceived enjoyment, and post-test scores.

Although the archetypes identified by Zambrano et al. [15] differ from those observed by
Slater et al. [21] and Swanson et al. [20]—primarily due to fundamental differences in the
games studied—meaningful parallels can still be drawn across the typologies. All three studies
identified two broad categories of students: engaged and disengaged. Within the engaged
group, each study further distinguished students focused on achievement from those focused
on exploration, with the latter consistently representing the largest subgroup. This suggests that
while specific archetypes may vary depending on game mechanics, these higher-level
behavioral patterns remain consistent across contexts and game genres and are likely shaped
by students’ initial interest in the game’s domain.

By analyzing the primary strategies students use, examining how motivational and cognitive
factors—such as initial interest and prior knowledge—relate to different player archetypes, and
evaluating how various forms of game interaction influence learning outcomes, game designers
can better understand the diverse characteristics of learners. This understanding can inform the
design of educational games and the development of targeted interventions tailored to distinct
learner profiles. Building on this motivation, the present study aims to identify and study player
archetypes within a different educational game, examine their associations with interest
development, learning gains, and other motivational measures, and assess the generalizability
of the behavioral typologies identified in these three prior studies.

3. Methods

3.1 Educational Context

The data analyzed in this paper come from four 5-day summer camps held in different locations
across the United States as part of the WHIMC project [35]. WHIMC uses Minecraft’s Java
Edition to create simulations that engage learners in exploring hypothetical astronomy
scenarios through What-if questions, such as “What if Earth had no moon?” or “What if Earth
orbited a colder sun?” During the first three days of the camp, learners were guided by
pedagogical agents (NPCs) and human facilitators as they evaluated the habitability of various
hypothetical worlds and real exoplanets modeled in Minecraft. Using scientific tools, students
measured key habitability factors such as temperature, air pressure, radiation, gravity, and
atmospheric composition, and made evidence-based judgments about each world’s potential to
support life. Their conclusions were grounded in scientific data, direct observation, and prior
knowledge of astronomy and environmental science. In the final two days, students explored a
Mars map built using real Martian terrain data, where they were tasked with designing and
constructing a shelter capable of sustaining human life on Mars.

During the 5-day camp, students completed several motivational and learning assessments
(see Table 1). On Day 1, they took an interest development scale [36] and an astronomy
knowledge assessment [37]. On Day 3, they completed an astronomy and Minecraft interest
survey [35], [37]. On the final day, students completed a situational interest scale [38], a self-
efficacy scale [39], and repeated the Day 1 instruments. Notably, for the first of the four
summer camps, the situational interest scale and the astronomy/Minecraft interest surveys were
not administered; these measures were introduced beginning with the second camp.

A total of 61 students from both urban and rural settings across four different states
participated in the summer camps. The sample included 40 male students, 17 female, 1 non-
binary, and 3 who preferred not to disclose their gender. Participants represented diverse ethnic
backgrounds: 23 identified as White, 14 as African American, 7 as Hispanic/Latinx, 2 as Native
American, 9 as Other, and 6 preferred not to disclose their ethnicity. Participation in the study
was entirely voluntary, with written consent obtained from all students and their parents. Four
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students who either did not complete any surveys or showed no recorded activity in the virtual
world were excluded from the analysis.

Table 1. Interest and knowledge assessments

Instrument Day Camps N

Boeder et al.’s Interest Development [36] 1 4 56
Gadbury et al.’s Astronomy Knowledge Assessment [37] 1 4 52
Gadbury et al.’s Astronomy Interest [35], [37] 3 3 36
Gadbury et al.’s Minecraft Interest [35], [37] 3 3 36
Boeder et al.’s Interest Development [36] 4 3 39
Linnenbrink-Garcia et al.’s Situational interest [38] 4 3 39
Britner & Pajares’ Self-efficacy [39] 4 4 52
Gadbury et al.’s Knowledge Assessment [37] 4 4 48

3.2 Ordered Network Analysis

The purpose of this research is to identify student archetypes—operationally defined in line with
[15, 20, 21] as patterns of behavior that characterize a substantial subset of students’ gameplay
styles, derived from in-game action data within WHIMC. We then examine the relationships
between their in-game actions, knowledge, learning outcomes, and motivational measures. To
this end, we employ Ordered Network Analysis (ONA; [34]). ONA has been previously used
to analyze log data from various game-based learning environments and to identify differences
in gameplay patterns between high- and low-learning students [15], [40], [41].

Epistemic Network Analysis (ENA), the foundation upon which ONA is built [22],
constructs relationship models from unit variables, grouping variables, conversation variables,
and stanzas. Initially developed to analyze discourse features that frequently co-occur, ENA
uses these variables to identify patterns of co-occurrence among time-grouped constructs. The
unit variable defines the primary level of analysis, (e.g., a single student), while the grouping
variables organize units into broader categories for comparison (e.g., experimental conditions,
cohorts, or teams). ENA selects cases to consider together by applying a moving window,
referred to as a stanza, to a coded ordered dataset, counting co-occurrences between pairs of
constructs for each unit of analysis (in this case, individual students) within the stanzas. These
stanzas are grouped into conversation variables that capture the broader context (i.e., the overall
task or timeframe which is segmented into stanzas by the moving window). ENA then
constructs a weighted network for each unit, depicting each construct as a node in a
visualization and showing connections between each of those as weighted edges to offer insight
into broader behavioral or cognitive patterns across the dataset. ONA extends this foundational
method (ENA) to also consider the order in which constructs appear in the data (i.e. A = B is
treated differently than B — A). Additionally, ONA calculates connections involving self-
transitions (e.g., A = A and B — B). Thus, ONA visualizations illustrate the direction and
strength of connections (represented by bi-directional edges between nodes) and the frequency
of construct repetition (indicated by node sizes).

In this study, both the unit and conversation variables were defined at the level of each
individual student’s gameplay session, ensuring that data from one student was not linked to
another’s. We also included the day as an additional conversation variable, since actions from
different days are unlikely to be connected in the same way as consecutive actions within a
single session. Although previous ENA studies analyzing non-linguistic gameplay behaviors
have used game levels as stanzas [40], we chose not to use that finer-grained approach, as
recent actions in one game world can still be meaningfully related to actions taken in a
subsequent world. We tested several moving window lengths—which control how many
previous lines of coded data are considered for co-occurrence. After finding no substantial
differences in lengths ranging from 2 to 10, we used the standard value of 4, commonly adopted
in ENA and ONA studies [42].
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3.3 Coding Logs

This study focuses on the first three days of the summer camp, during which students explored
various what if worlds to identify physical variables, observe environmental changes, and
assess the potential for human habitability. These days were selected because the worlds
involved similar expected behaviors rooted in scientific exploration, allowing a single
codebook to be consistently applied across all three. The structured nature of these activities
also ensured greater consistency across camps held in different locations. In contrast, the final
two days centered on habitat-building tasks, which involved a different set of student actions
that could not be effectively captured using the same codebook. These activities were also more
open-ended, making them harder to analyze through interaction logs alone and more difficult
to compare across camps.

The interaction logs captured each student’s X, Y, and Z coordinates every three seconds,
along with the in-game commands they used. These commands included actions such as
measuring physical variables with scientific tools, recording observations visible to other
players, and teleporting to the location of another player or object. The constructs identified
from the log data—defined through collaborative discussions among the authors and an initial
exploration of the logs including correlating behaviors to astronomy interest and examining in-
game action distributions—corresponded to the specific actions students performed during this
period. Students were free to explore the virtual worlds at their own pace—moving quickly or
slowly, alone or with others—while observing areas of interest, collecting measurements, and
sharing findings through written messages within the game. These behaviors formed the basis
of the codebook presented in Table 2.

Table 2. Codebook

Code Definitions

Non-stopping The student has stopped less than 3 times during the last minute. A stop corresponds to moving
less than three blocks during a period of three seconds.

Slow Exploration The student has moved less than 30 blocks during the last minute (and more than 0).

Social Movement The student was less than 20 blocks from another player during all of the last minute.

Individual Movement The student was more than 35 blocks away from any other player during all of the last minute.

Teleport The student has teleported to another location

Point of Interest The student is inside of a point of interest for 10 seconds or more. Every 10 seconds within the
Point of Interest trigger this code again.

Talk to NPCs The student is at a distance of 4 blocks or less to an NPC for 10 seconds or more. Every 10
seconds close to the NPC trigger this code again.

Science Tool The student uses a scientific tool to measure a physical variable.

Scientific Description In-game observations in which students describe the virtual world without making an additional
analysis or questioning the implications of that observed phenomenon. For example, “There is a
tree and a cow,” or “Temperature is -10 F.”

Scientific Inquiry In-game observations in which students ask a science-related question. Ex: “Can humans survive
without the moon.”

Scientific Reasoning In-game observations in which students use logical reasoning and attempt to comprehend scientific
concepts based on their observations (e.g., “theory: the biodome roof opens to regulate sunlight.")

Non-scientific In-game observations that include social, cultural, or emotional references that are not related to

Observations science or astronomy.

For constructs that could be directly identified from the logs without requiring interpretive
judgment (e.g., Non-Stopping, Slow Exploration, Individual Movement, Teleport, Talk to
NPCs, and others), no manual coding or inter-rater reliability evaluation was necessary. Each
time a student’s logged actions met the definition of any construct, a new coded line was
generated. For example, when a student teleported to a new location, a new line coded as
Teleport was added. If the student’s subsequent behavior matched the criteria for another
construct—such as Slow Exploration, defined as moving fewer than 50 blocks during a
minute—a new line labeled with that construct was added. In this way, when the ONA
algorithm is applied, a connection from Teleport to Slow Exploration is recorded. We adopted
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this event-based coding approach instead of using fixed time intervals, as some constructs
correspond to brief actions lasting only a few seconds, while others span several minutes. A
fixed granularity would obscure the temporal order of actions occurring within the same
segment. Each coded line was assigned to a single construct. When actions co-occurred (e.g.,
Using a Tool while Visiting a Point of Interest), two separate coded lines were created: one for
the initially triggered construct and another for the co-occurring behavior.

The thresholds for the Non-Stopping and Slow Exploration codes were determined by
analyzing the distributions of students’ movement speeds and pause durations, taking into
account the sampling time of the location data (every 3 seconds). We operationalized the Non-
Stopping definition in this way (vs. alternative measures of rapid movement) because WHIMC
requires students to pause briefly to take measurements or make observations. For the
Individual Movement code, the threshold was based on the maximum in-game field of view (35
blocks); in contrast, a reduced threshold of 20 blocks was used for the Social Movement code
to identify instances when students were in close proximity to others, rather than simply
observing from a distance. Points of Interest refer to specific in-game locations students are
expected to visit; a 10-second threshold was applied because 95% of visits to these areas lasted
at least that long. Conversations with NPCs occur through text boxes that automatically appear
when a student is within 4 blocks of an NPC; this distance was therefore used as the threshold
for the Talk to NPC code. The 10-second duration threshold for this code mirrors the rationale
used for Points of Interest.

The four codes used to analyze students’ in-game observations—Scientific Description,
Scientific Inquiry, Scientific Reasoning, and Non-scientific Observations—were adapted from
prior research on student interactions in a similar environment [43]. Although [43] proposes a
more comprehensive coding scheme, we select a reduced set of constructs in order to streamline
both the Ordered Network Analysis and Clustering Analysis (see Sections 3.3 and 3.4). Inter-
rater reliability between two human coders was established for these four codes (Kappa > 0.75)
using a set of 100 student observations. After reaching agreement, the coders divided the
remaining dataset (1033 observations in total) for manual annotation.

3.4 Cluster Analysis

We employed k-means clustering to identify player archetypes, following the approach
proposed by Zambrano et al. [15]. The clustering features consisted of the strengths of directed
transitions between different activities (e.g., Science Tool — Scientific Description) and the
frequency of repeated actions (e.g., Science Tool — Science Tool), aggregated at the student
level. These transition strengths, or connection weights, were extracted from the ONA model
developed using WebENA [44]. The variance explained by the first two principal components
used in the ONA visualization was 26.1% and 19.4%, respectively—typical for ENA and ONA
plots (e.g., [45]). We conducted cluster analysis using all connection weights rather than
relying solely on the first two components, thereby avoiding the information loss associated
with dimensionality reduction.

We used silhouette analysis [46] with the Sci-Kit Learn library in Python [47] to determine
the optimal number of clusters. Silhouette values, which range from -1 to 1, measure the
similarity of an object to its own cluster (cohesion) relative to other clusters (separation). We
calculated silhouette values for cluster counts ranging from 2 to 20 and selected N=3 as it
produced the highest average silhouette score. After assigning each student to a cluster, these
clusters were used as grouping variables to create the ONA models using the WebENA tool
[44]. This grouping variable aggregates the strength of each identified transition for all students
within a group, enabling comparisons of average patterns across groups.

The coded in-game actions (and combinations of actions) and interest and knowledge
measures were compared across the resulting clusters using a Kruskal-Wallis test. We also
compared normalized learning gains across clusters. Normalized learning gains were calculated
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as the ratio of the observed improvement (or decrease) to the maximum possible improvement
(or decrease) for each student. To control for the false discovery rate, we applied the Benjamini-
Hochberg correction to the significance level of each individual test [48].

We also analyzed correlations between interest measures and in-game actions (codes)
derived from the groupings to identify associations not directly observable from the clusters,
which do not fully capture the continuous distribution of variables. Specifically, we used
Spearman’s rank correlation to analyze the correlations between the interest measures and the
transitions that showed significant differences in strength across the three clusters, applying
the Benjamini-Hochberg correction to these results as well. To address the loss of statistical
power caused by multiple hypothesis testing—particularly important with a sample size of 57
students—we limited the correlation analysis to the transitions that represented the primary
differences among the three archetypes. For the same reason, we focused on initial interest and
normalized learning gains, as these instruments were completed across all four camps and
reflected the key differences between the clusters. Finally, we conducted a Monte Carlo
analysis [49], with 10,000 runs, to establish a 95% confidence interval for the number of
statistical tests that could be significant by chance, given the total number of tests conducted.

4. Results

4.1 Clustering and Ordered Network Analysis

The silhouette analysis identified three main player archetypes or typologies. Inspired by
Bartle’s archetypes [16], we refer to these clusters as EXPLORERS, ROAMERS, and SCIENTISTS.
Table 3 presents the average code frequencies per student for each cluster. Statistical
differences were identified for seven codes after applying the Benjamini-Hochberg correction.
A Monte Carlo analysis (95% confidence interval) suggests that only 0 to 2 significant results
would be expected by chance. Figure 2 illustrates the individual models for these three
archetypes. Table 4 lists the weights of all the connections for which a Kruskal-Wallis test
(with Benjamini-Hochberg adjustment of alphas) revealed statistically significant differences
across the three groups.

Table 3. Average code frequencies (and SD) per student for each cluster. Significant differences across the
three groups, determined using a Kruskal-Wallis test with a Benjamini-Hochberg correction of alphas,
are highlighted in bold.

Code Roamers Explorers Scientists p-val

Science Tool 7.8 (6.2) 20.3 (14.1) 40.4 (20.0) <0.001
Scientific Description 9.7 (8.1) 8.1(5.2) 22.1 (15.2) 0.017
Non-Stopping 22.1 (12.0) 26.5 (10.5) 15.4 (11.2) 0.018
Point of Interest 6.3 (4.4) 38.2 (19.3) 14.5 (11.7) <0.001
Social Movement 13.5(7.8) 24.5 (10.5) 14.3 (9.3) 0.002
Talk to NPC 4.4 (4.4) 17.4 (10.2) 6.9 (4.6) <0.001
Slow Exploration 4.1 (4.0) 9.2 (5.7) 5.0 (4.6) 0.003
Teleport 3.2(4.3) 10.8 (13.5) 11.5 (12.9) 0.218
Ind. Movement 11.5 (8.1) 14.4 (9.7) 10.1 (8.1) 0.334
Non-Scientific Observation 2.4 (3.6) 2.2(2.7) 1.7 (2.6) 0.457
Scientific Reasoning 2.5(2.3) 2.6 (3.3) 3.8 (3.7) 0.595
Scientific Inquiry 1.3(1.6) 1.8 (4.6) 1.0 (1.0) 0.658
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Table 4. Connection weights (CW) for the three player archetypes. Data is sorted by tra

b) Explorers, and c)

nsition weights, all of

which showed significant differences across the three groups based on a Kruskal-Wallis test (with
Benjamini-Hochberg correction of alpha). Grayscale highlights larger transition weights.

Archetypes Transition Explorers Roamers Scientists p-val
Explorers > Roamers > Point of Interest - Non-Stopping 0.113 0.071 0.047 <0.001
Scientists Non-Stopping — Point of Interest 0.106 0.077 0.042 0.001
Point of Interest — Social Movement 0.106 0.044 0.036 <0.001
Social Movement — Talk to NPC 0.083 0.046 0.027 0.006
Talk to NPC — Social Movement 0.083 0.040 0.033 0.007
Non-Stopping — Talk to NPC 0.060 0.049 0.023 0.004
Talk to NPC — Slow Exploration 0.045 0.022 0.009 0.001
Talk to NPC — Non-Stopping 0.045 0.019 0.014 <0.001
Explorers > Scientists > Point of Interest — Point of Interest 0.584 0.109 0.159 <0.001
Roamers Talk to NPC — Talk to NPC 0.107 0.038 0.040 <0.001
Point of Interest — Talk to NPC 0.100 0.027 0.035 <0.001
Social Movement — Point of Interest 0.097 0.003 0.033 <0.001
Talk to NPC — Point of Interest 0.096 0.014 0.021 <0.001
Slow Exploration — Talk to NPC 0.045 0.009 0.013 0.002
Point of Interest - Slow Exploration 0.022 0.004 0.008 0.003
Roamers > Explorers > Non-Stopping = Non-Stopping 0.188 0.476 0.071 <0.001
Scientists Social Movement — Non-Stopping 0.155 0.239 0.061 <0.001
Non-Stopping — Individual Movement 0.139 0.285 0.073 0.001
Non-Stopping — Social Movement 0.130 0.202 0.072 <0.001
Individual Movement — Non-Stopping 0.118 0.231 0.063 0.004
Individual Movement — Social Movement 0.035 0.087 0.024 0.001
Scientific Description — Non-Stopping 0.040 0.144 0.065 <0.001
Scientists > Explorers > Science Tool — Science Tool 0.149 0.053 0.537 <0.001
Roamers Point of Interest - Science Tool 0.090 0.015 0.097 0.004
Scientists > Roamers > Science Tool — Scientific Description 0.043 0.116 0.292 <0.001
Explorers Scientific Description — Science Tool 0.033 0.082 0.238 <0.001
Scientific Description — Scientific Description 0.031 0.115 0.176 0.001
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The EXPLORERS are characterized by visiting more Points of Interest (Avg =38.2, p <0.001)
and interacting with more NPCs (Avg = 17.4, p < 0.001) than any other group. Additionally,
they spend more time in these areas, as reflected in the higher connection weights for the self-
transitions of both codes (CW = 0.584 for Points of Interest = Point of Interest and CW =
0.107 for Talk to NPC — Talk to NPC). This pattern is also evident in their higher connection
weights across most transitions involving either Points of Interest or Talk to NPC. However,
despite actively visiting the expected locations and engaging with NPCs more than the other
archetypes, EXPLORERS are less likely to use Science Tools or make science-related
observations—both desired behaviors in the game—compared to the SCIENTISTS. Notably, the
EXPLORERS produce the fewest Scientific Descriptions after using a Science Tool (CW =0.043,
p <0.001) and make fewer Scientific Descriptions overall (Avg = 8.1, p = 0.017).

Furthermore, although the EXPLORERS visit Points of Interest and interact with NPCs, they
are also the group that most frequently engages in Non-Stopping (Avg =26.5, p = 0.018). This
behavior is particularly notable after reaching Points of Interest (CW = 0.113, p < 0.001) or
Talking to NPCs (CW = 0.045, p < 0.001). This suggests that, although they visit these
locations, they might not take the time to stop and perform actions such as making observations
or using tools. However, this does not imply that these students always rush through the
environment without analysis. On the contrary, EXPLORERS also engage the most in Slow
Exploration (Avg = 9.2, p = 0.003) and tend to explore in a social manner (Social Movement),
staying close to other players (Avg = 24.5, p = 0.002). This indicates that, while they slow
down to observe or follow others—suggested by the predominance of Social Movement—they
are less likely to pause to perform other actions beyond exploration, such as posting
observations.

Like EXPLORERS, ROAMERS are also characterized by frequent movement without stopping
at specific locations to complete other tasks (Non-Stopping Avg =22.1, p = 0.018). However,
unlike the EXPLORERS, ROAMERS visit significantly fewer Points of Interest (Avg = 6.3, p <
0.001) and interact with fewer NPCs (Avg = 4.4, p <0.001). This group performs few actions
beyond movement and exhibits the highest connection weight for Non-Stopping self-transitions
(CW =0.476, p <0.001) as well as for all transitions involving Non-Stopping. While ROAMERS
make slightly more Scientific Descriptions than EXPLORERS (Avg = 9.7), they use Science
Tools the least (Avg = 7.8, p < 0.001). Additionally, they engage the least in recurrent
conversations with NPCs (CW = 0.038, p < 0.001) and rarely use multiple Science Tools
repeatedly (CW = 0.053, p < 0.001) or after arriving at a Point of Interest (CW = 0.015,
p=0.004). These findings suggest that ROAMERS may require more support to develop
behaviors aligned with the game’s desired learning outcomes than the other groups.

The SCIENTIST group aligns most closely with the desired/designed pattern of interactions
with the game as defined by course instructors and WHIMC designers. This group is
characterized by significantly higher use of Science Tools (Avg = 40.4, p < 0.001) and more
frequent Scientific Descriptions (Avg =22.1, p = 0.017). Notably, they are also the group that
most often makes Scientific Descriptions immediately after using a Science Tool (CW = 0.292,
p < 0.001). Although SCIENTISTS visit Points of Interest less often than EXPLORERS (Avg =
14.5, p < 0.001), they are the group most likely to use Science Tools upon arriving at these
locations (and staying there for at least 10 seconds; CW = 0.097, p = 0.004). Additionally,
SCIENTISTS engage in Non-Stopping the least (Avg = 15.4, p = 0.018) and exhibit the lowest
connection weights for transitions involving Non-Stopping. This suggests that SCIENTISTS tend
to pause more frequently to perform other actions instead of continuously moving through the
game. No significant differences were observed for the remaining codes (e.g., Teleport,
Individual Movement, and Non-scientific Observations) across the three groups.
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4.2 Associations with Knowledge and Motivation Measures

4.2.1  Measures per Player Archetype

Table 5 presents the average knowledge and motivation measures for each group. We observed
differences between the initial level of interest across the three groups below the significance
threshold of 0.05 (p = 0.027), with ROAMERS showing the lowest initial interest. However,
none of these possible high-level group differences remain significant after applying the
Benjamini-Hochberg correction, and this set of analyses does not have more significant results
than could be expected by chance according to a Monte Carlo analysis (95% confidence interval
of 0 to 2 significant tests).

Table 5. Average knowledge and motivation measures per archetype. Standard deviations are shown in

parentheses.

Measure Explorers Roamers Scientists p-val

Number of Students 33 11 13 NA
Boeder et al.’s Interest Development (initial) 3.45 (1.41) 2.25 (1.69) 3.98 (1.07) 0.027
Boeder et al.’s Interest Development (final) 3.50 (1.79) 2.67 (1.62) 4.06 (1.57) 0.202
Gadbury et al.’s Astronomy Interest 2.41 (1.16) 1.85(0.60)  3.06 (1.24) 0.136
Gadbury et al.’s Minecraft Interest 2.25(1.67) 2.28(0.61) 2.62(0.83) 0.555
Linnenbrink-Garcia et al.’s Situational Interest 2.24 (0.91) 2.20 (0.41) 2.50 (0.62) 0.556
Britner & Pajares’ Self-Efficacy 442 (1.28) 4.41(1.21) 4.36 (1.22) 0.953
Pre-test 11.65 (2.20) 11.33 (1.50) 11.67 (3.06) 0.929
Post-test 12.55 (2.93) 10.50 (3.16) 13.82 (2.86) 0.090
Normalized Learning Gains 0.12 (0.22) -0.02 (0.22) 0.24 (0.26) 0.069

4.2.2 Correlation Mining

To complement the analysis of interest and knowledge measures across player archetypes, we
calculated Spearman correlation coefficients between the transitions listed in Table 4 (along
with the individual codes showing significant group differences in Table 3) and two variables:
initial interest (measured on Day 1) and normalized learning gains. In total, we conducted 68
correlations (27 transitions and 7 individual codes, each tested against 2 outcome measures).
Of these, 12 yielded p-values below the 0.05 significance threshold (see Table 6), but none of
them remain significant after the Benjamini-Hochberg correction. To assess whether this
number of significant results could be due to chance, we conducted a Monte Carlo analysis,
which estimated the 95% confidence interval for false positives under 68 independent tests to
be between 0 and 7. This suggests that while individual correlations should be interpreted with
caution, the overall pattern of results is unlikely to have occurred by chance.

Table 6. Spearman correlation coefficients between actions vs. initial interest development and normalized
learning gains. Sig. p-values (0.05) are highlighted in bold. Only actions with a statistically significant
correlation with Interest or Learning gains are shown in this table. The first column indicates the player
archetype who most frequently performed each action.

Boeder et al.’” Interest

Most freq. Archetype

Action

Development (initial)

Learn Gains

Explorers

Point of Interest

Talk to NPC

Social Movement

Talk to NPC — Non-Stopping
Non-Stopping

Talk to NPC —» Slow Exploration

0.325 (0.014)
0.314 (0.019)
0.302 (0.024)
0.283 (0.034)
0.280 (0.037)
0.039 (0.775)

0.163 (0.272)
0.066 (0.657)
0.018 (0.905)
0.163 (0.273)
0.138 (0.356)
-0.316 (0.030)

Scientists

Scientific Description

Science Tool

Science Tool » Science Tool

Point of Interest - Science Tool
Science Tool » Science Description

0.301 (0.024)
0.269 (0.053)
0.132 (0.332)
0.120 (0.379)
0.021 (0.879)

0.120 (0.422)
0.346 (0.017)
0.329 (0.024)
0.430 (0.003)
0.284 (0.045)

Roamers

Non-Stopping — Non-Stopping

-0.285 (0.034)

-0.050 (0.737)
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Six of the actions that showed statistical differences across the three player archetypes also
exhibited apparent positive correlations with initial interest: Point of Interest (p = 0.325, p =
0.014), Talk to NPC (p = 0.314, p = 0.019), Social Movement (p = 0.302, p = 0.024), Scientific
Description (p = 0.301, p = 0.024), Talk to NPC — Non-Stopping (p = 0.283, p = 0.034), and
Non-Stopping (p =0.280, p=0.037). Again, we cannot be certain about individual correlations,
but the overall pattern is highly unlikely to be due to chance. Interestingly, five of these six
actions were predominantly performed by EXPLORERS. These actions are particularly
associated with student movement within the virtual worlds and suggest that students who
move more frequently began the camp with higher levels of interest.

Certain actions—such as visiting Points of Interest or Talking to NPCs—are intuitively
linked to student interest. However, it is notable that Non-Stopping appeared in two of the
positively correlated behaviors (Non-Stopping itself and Talk to NPC — Non-Stopping),
challenging our initial hypothesis that Non-Stopping is inherently undesirable. Importantly,
repeated Non-Stopping (i.e., Non-Stopping — Non-Stopping), which was more common among
ROAMERS than EXPLORERS, was negatively correlated with interest. This distinction suggests
that although EXPLORERS also engage in Non-Stopping, they typically do so after a meaningful
event—such as interacting with an NPC or Visiting a Point of Interest (see Table 4)—and are
more likely to follow it with Slow Exploration (see Tables 3 and 4), a behavior potentially
associated with higher interest. In contrast, while ROAMERS engage in fewer total Non-Stopping
instances, they tend to sustain it for longer stretches. This sustained Non-Stopping is negatively
associated with initial interest, highlighting a key difference in exploration patterns across
archetypes and their relationship to student motivation.

Overall, four patterns showed strong positive correlations with learning gains: Science Tool
(p =0.346, p = 0.017), Science Tool — Science Tool (p = 0.329, p = 0.024), Point of Interest
— Science Tool (p = 0.430, p =0.003), and Science Tool — Scientific Description (p = 0.284,
p = 0.045). Notably, these actions were predominantly performed by the SCIENTISTS and
reflected desired behaviors in the game. These correlations are likely driven by the overall
positive relationship between using science tools and learning. However, these specific
patterns—(1) using a tool after visiting a point of interest (a stronger correlation than the direct
association between tool usage and learning), (2) employing multiple science tools, and (3)
making scientific observations after using a science tool—suggest that learning is not solely
linked to the use of the tools themselves. Instead, it is closely tied to using the tools under the
right conditions to achieve the core objective of the learning experience: learning science by
evaluating planetary habitability through scientific exploration and experimentation.

In contrast, the action Talk to NPC — Slow Exploration, which was primarily performed by
the EXPLORERS rather than the SCIENTISTS, was negatively correlated with learning gains.
These findings suggest that while some of the EXPLORERS’ actions reflect high interest, this
interest may not necessarily translate into behaviors that enhance learning gains. On the other
hand, the SCIENTISTS, who also began with high interest, exhibited behaviors more aligned
with the game’s intended design, contributing to higher learning gains. ROAMERS overall
tended to not perform any of these actions associated with higher learning or interest. Again,
any individual correlation among this set remains uncertain, so replication will be important.

5. Discussion & Conclusion

5.1 Typologies across Games

This study develops player archetypes using a different approach than most of the previous
literature, clustering based on behaviors rather than on self-reported motivation (e.g., [16],
[17], [18], [19]). We identified three distinct player archetypes (EXPLORERS, ROAMERS, and
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SCIENTISTS), which show substantial overlap with the 4 archetypes identified by Zambrano et
al. [15], who analyzed behavior in a different STEM-focused open-world game (see Figure 3).
Our ROAMERS, like Zambrano et al.’s, are characterized by disengaged behaviors, including
movement through the virtual environment without performing discipline-related actions, and
by lower interest in STEM. Similarly, our EXPLORERS match Zambrano et al.’s CONVERSERS—
who visit multiple locations and frequently interact with NPCs, but do not deeply engage in
science-related behaviors or achieve high learning gains. Notably, EXPLORERS and
CONVERSERS were the most common archetype in each studies, representing over 40% of
participants. Finally, our SCIENTISTS, who align with Zambrano et al.’s WORKSHEET USERS
and SCANNERS, consistently engaged in the game’s core scientific behaviors (in our study,
frequent hypothesis testing and systematic data collection and in [15], frequent use of scientific
tools and observations). In both studies, these actions were associated with the highest post-
test scores and learning gains.
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Figure 3. Placement of the three identified archetypes (ROAMERS, EXPLORERS, and SCIENTISTS) within the
broader framework proposed across multiple typologies. This figure replicates Figure 1, with the addition
of the three archetypes we identified positioned according to their observed conceptual similarities.

These parallels between behavioral typologies also hold across different game genres. For
instance, the DISENGAGED and EXPLORER archetypes identified by Slater et al. [21] in a level-
based puzzle game closely resemble ROAMERS and EXPLORERS in our study. Likewise, Slater
et al.’s ACHIEVERS and our SCIENTISTS are characterized by performing fewer but focusing
more deliberate actions that are aligned with the game’s core learning objectives. Although
Slater et al. did not examine these archetypes using external measures, the similarities with our
typology suggest that these archetypes may be capturing generalizable patterns of engagement,
at least among the kinds of populations that have been using the games in these studies.

5.2 Implications for Game Design

The consistency of player typologies across multiple serious games—and their alignment with
multiple archetypes proposed in HCI frameworks of player typology (e.g., [16], [17], [19])—
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can help game designers anticipate how these archetypes may emerge. This insight enables
designers to better predict the specific actions students are likely to perform and to proactively
address undesired behaviors. Among our identified archetypes, ROAMERS appear to be the
group most in need of intervention. They showed no positive learning gains and exhibited
overall disengagement, performing fewer of the key actions designed for learning than the other
two archetypes. These behaviors were also associated with lower motivational measures,
suggesting that this group may have less interest in STEM and science overall—potentially
influencing their level of engagement with the game.

Since continuous movement without stopping was the primary behavior associated with low
interest, a behavior also observed for this most disengaged group across different games (e.g.,
[15]) it could serve as a trigger for facilitators or interviewers to explore students’ engagement
through qualitative methods—for example, through in-the-moment interviews [50]. This
approach could help uncover why some students continue moving without pause, even when
they are not reaching new points of interest. Once such students are identified, capturing the
specific moments when they stop to contemplate something within the game may also be
valuable. These instances could reveal elements that momentarily sparked their interest,
offering developers insights into features worth amplifying in future versions of the game.
Incorporating more attention-catching features—such as more animated or interactive objects,
surprising visual effects [51], references to familiar pop culture themes [52] or intriguing
hypothetical scenarios (e.g., seeing two moons, [35])—could also be incorporated (if not
already present) to test whether their presence encourages students to slow down or increase
their engagement and situational interest.

Beyond these design elements, developers might also consider introducing new narrative
elements to stimulate situational interest. Richer storytelling—such as supplementary quests or
short narrative arcs delivered through NPCs that present a mystery to solve or evoke empathy
in the player (e.g. [53], [S4])—has been shown to positively influence student engagement [53],
[55]. Additionally, recognizing that some students continue roaming without visiting key points
of interest, designers could implement a badge or reward system tied to specific locations (e.g.,
[56]). Such mechanics could encourage exploration of meaningful areas rather than aimless
movement across the map, thereby aligning students’ actions more to the intended tasks of the
game. However, effectively implementing these strategies will require a deeper understanding
of what could genuinely engage ROAMERS—whether it is the visual design, narrative content,
topic, level of challenge, or specific mechanics—and which factors are most likely to trigger
their curiosity.

The other two types of players, EXPLORERS and SCIENTISTS, appeared more engaged and
interested in the game. However, EXPLORERS may still benefit from additional support.
Although they seem to be actively engaged, as reflected in their higher number of visits to
points of interest compared to any other group in the context of this game, they do not
consistently engage in key learning-related behaviors, such as using scientific tools or making
systematic observations. Given the established link between these science-oriented actions and
learning outcomes, also observed in [15], the mechanics that already engage EXPLORERS could
be adapted to encourage them to slow down and participate more deliberately in the actions
associated with learning. An instructional design could, for instance, provide students with a
set of missions or goals that maintains a degree of freedom while smoothly guiding them toward
meaningful engagement with the game’s learning mechanics, an approach associated with both
improved learning outcomes and a more positive affective experience during gameplay [57].

A concrete example of this type of intervention within our game would be to encourage
scientific reflection and tool use by introducing checkpoints at points of interest that require
students to make an observation or use a tool before leaving each location. Another approach
could be to integrate brief quizzes or micro-tasks related to these locations, similar to those
implemented in other educational games (e.g., [54]). These tasks could be triggered at moments

34 International Journal of Serious Games | Volume 13, Issue 1, March 2026



A.F. Zambrano et al.

when students interact with mechanics that provide domain-specific content, prompting them
to reflect on what they are reading or observing and to engage with the intended game
mechanics to gather the information needed to answer the questions.

Furthermore, the EXPLORER group also tend to exhibit more social behaviors, including
frequent interactions with NPCs and social movement patterns, observed within the
CONVERSER archetype in the Zambrano et al’s study [15]. Since both behaviors are positively
correlated with interest, developers can leverage these tendencies not only to enhance learning
gains but also to reinforce students’ existing interest in science. One approach is to incorporate
additional NPC interactions that highlight the specific actions scientists would perform at
various points of interest visited by these students. Facilitators can also encourage deeper
engagement by prompting students to interact with NPCs and discuss the scientific work
represented in each world or biome. By explicitly linking scientific practices, NPC interactions,
and students’ in-game observations, educators can strengthen both STEM learning and
situational interest—building on students’ natural curiosity and social engagement.

The third main group, SCIENTISTS, parallels the WORKSHEET USERS and SCANNERS in
Zambrano et al.’s study [15], tending to have the best motivation and highest scores on
knowledge measures. Because this group generally follows the intended actions of the game
and achieves the highest learning outcomes, their behaviors can serve as a model for actions
that should be encouraged across other archetypes. In the context of our game, scientific tool
usage—the behavior most strongly correlated with learning gains—could be promoted by
incorporating additional opportunities to use these tools or by prompting students to engage
with them as they explore the virtual worlds. For example, developers might introduce NPCs,
pop-up messages, or quests that request specific measurements or encourage a more systematic
approach to data collection. Such interventions align with those proposed for the other two
archetypes and may help guide all students toward deeper scientific engagement.

Lastly, while designing educational games that enhance interest and provide targeted
scaffolding to guide students toward behaviors that improve learning is essential, the designers
of interventions cannot assume that students are uniform across contexts or remain unchanged
during their interaction with the platform. Any technology introduced into a classroom
inevitably interacts with the classroom’s culture, making it necessary for human educators to
continually review and adapt interventions based on students’ needs [58], [59]. Many of the
most effective and widely used intelligent tutoring systems have integrated dashboards that
help facilitators identify when students may need additional support [58]. For example, in
Reasoning Mind, teachers received real-time information when a student is struggling with a
specific concept, and teacher professional development emphasized using that information to
immediately engage in proactive remediation, which became a common classroom practice
[60]. Similarly, in ASSISTments, teachers review reports of the previous night’s homework
before class and adjust their planned lessons based on the questions students found most
difficult [61]. These dashboard-based interventions have been shown to improve teachers’
situational awareness [62], regardless of their age, gender, years of experience, or technological
self-efficacy [63]. In the context of educational games, similar dashboards could allow teachers
and facilitators to detect when students deviate from expected behaviors or learning pathways.
Teachers and facilitators might then intervene when a student leaves a point of interest without
completing the intended actions, prompting students to reflect on the game content. Likewise,
if the game detects excessive roaming or signs of struggle, the system could alert teachers or
facilitators to approach the student, identify potential issues, and provide timely support.

5.3 Limitations & Future Work

Although correlations between students’ initial STEM interest and certain in-game behaviors
offer potential explanations for the observed archetypes, a deeper understanding of why
students adopt these patterns—and how to better support them—Iikely requires a qualitative
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approach that incorporates students’ perspectives, such as in the moment interviews when key
behaviors occur [50]. These interviews can shed light on students’ strategies, actions, and
motivations in response to specific in-game events (e.g., continuous movement without
stopping, which was associated with low interest). By incorporating this qualitative lens,
researchers and designers can gain a more holistic understanding of student engagement and
develop targeted interventions to better support diverse learners.

Another limitation of this study’s methodology is its assumption that students maintain a
consistent archetype across different games and throughout the entire gameplay experience. In
reality, students may adopt different behavioral archetypes depending on their interest in a
particular genre or topic. Investigating these shifts more longitudinally, across games and game
domains, would be a valuable direction for future research. Additionally, even within the same
game, a player’s archetype may shift in response to major changes in game mechanics. In our
study, such a shift occurred after the third day of camp, when students moved from conducting
scientific observations and evaluating planetary habitability to designing a biome for survival.
Although this transition motivated our decision to focus on the initial three-day period, future
research should explore how students’ archetypes evolve within the course of longer games,
what triggers these changes, and how they relate to different learning outcomes.

Despite these limitations, the findings of this study contribute to the literature on educational
game design by examining the relationship between behavior-based archetypes and their
associated outcomes. By better understanding how students engage with games, developers and
educators may be better able to identify and support struggling or disengaged learners, build
on the actions of already engaged students to improve their outcomes, and integrate in-game
or in-person strategies to optimize the learning experience for learners across different
gameplay approaches.
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