
pag. 19 

 

 
International Journal of Serious Games Volume 4, Issue 2, June 2017 

ISSN: 2384-8766 http://dx.doi.org/10.17083/ijsg.v1i4.47 

Procedural Attack! Procedural Generation for Populated Virtual Cities: A 
Survey 

Werner Gaisbauer1, Helmut Hlavacs2 
1 University of Vienna, werner.gaisbauer@gmail.com 
2 University of Vienna, helmut.hlavacs@univie.ac.at 

 

Abstract  

On the one hand, creating rich virtual worlds "by hand" like in the game Grand Theft 

Auto V is hugely expensive and limited to large studios. On the other hand, 

procedural content generation (PCG) allows tiny teams to create huge worlds like 

Hello Games did with only four people (in the beginning) for the recently released 

game No Man's Sky. Following in the footsteps of Hello Games, this paper tries to 

equip the reader with an overview about the state-of-the-art of how to build such a 

virtual world, i.e., a populated virtual city with buildings, streets, parks, vegetation, 

humans, and vehicles, using just PCG assets. Each PCG asset that is envisioned to 

bring the city to life is grouped and discussed in detail and the latest research trends 

in PCG are presented together with open questions. Using the above-mentioned PCG 

assets, instead of months, a city can be built in a mere couple of minutes by a user 

without much experience in designing 3D assets. The city can then be used for many 

applications like games, virtual reality (VR), or film. 

Keywords: Virtual Worlds, PCG, 3D Assets, Games, VR; 

1. Introduction 

Vast universes can be built with the help of procedural content generation (PCG) [1]. The recently 

released game “No Man's Sky” [2] proves that a small team of people can build such a 

procedurally generated universe with astonishing detailed planets, plants, and creatures. Following 

in their footsteps, the goal of this paper is to harness the power of PCG and equip the reader with 

an overview about the state-of-the-art of how to make a virtual world, i.e., a populated city with 

buildings, streets, parks, vegetation, and vehicles, inhabited by virtual people, with as little effort 

as possible. It should be possible to customize the city, by spawning different kinds of assets from 

a palette (e.g., buildings, virtual people, streets, parks etc.). The idea is, to apply PCG algorithms, 

to create all the distinct assets and bring the city to life. The different PCG assets that are presented 

in this paper can be thought of as a foundation for a “city construction toolkit”. To spark the 

imagination of the reader, an example for such a procedurally generated city is shown in Figure 1 

from the indie game “The Hit” [3]. 

 

 

Figure 1. Generated buildings, pedestrians and vehicles in the indie game “The Hit”. 

 

 

http://journal.seriousgamessociety.org/


pag. 20 

 
International Journal of Serious Games Volume 4, Issue 2, June 2017 

ISSN: 2384-8766 http://dx.doi.org/10.17083/ijsg.v1i4.47 

In the vision of this paper, to build the virtual city, the user just should invoke different kinds 

of PCG algorithms via an interface (a graphical user interface (GUI), where the mouse plays a 

major role, i.e., the user “clicks together” content like puzzle pieces) and the computer builds parts 

of the city in a fully automated way (without the need for an artist to provide user content) as 

described in this research [4]. Usually, PCG algorithms have parameters (e.g., a template of a 

house has a given building lot and a height, or an office building has a basic configuration of how 

the walls are placed) that can be modified by the user to create content to her desire [5]. To make 

building quicker and easier for the user, a basic configuration for each PCG algorithm template is 

already provided by default, and the user can then iteratively change the suggested design via 

moving the walls, etc. (similarly, as done in this research [4]). All assets that are generated via 

PCG algorithms already have physical properties. The virtual people act per a standard behavior 

and walk on random waypoints by default, all of which can be customized by the user [6]. 

There are a lot of possibilities for using a populated virtual city (e.g., the generated cities can 

be used for VR games/experiences) and the procedural assets of the city construction toolkit can 

also be used “per se” in other (non-urban) settings as well. Game designers, film makers, and even 

researchers might be interested in the city construction toolkit for various purposes, as many 

games1 and films have urban settings and there is a lot of interesting future research possible. The 

user of the toolkit does not have to be an artist or graphic designer (but can be of course), which is 

a big advantage, and cities can be rapidly built in just a few minutes, so many alternatives might be 

tried in a reasonable time frame. 

2. Method 

This section tries to explain how the literature review (survey) in this paper was done, so it is 

possible to evaluate how the sources were selected in principle. We did not follow a strict protocol 

in the sense of a running a replicable experiment but rather used a relaxed procedure for 

performing the literature review. However, using this relaxed procedure, it should be possible to 

follow in principle how the sources in this paper were selected and with what kind of bias. The 

relaxed procedure is described in as much detail as possible in this section. 

 

2.1 Research Questions  

The goal of this paper is to equip the reader with an overview about the state-of-the-art of how to 

make a procedural populated virtual city. The following research questions were derived from that 

general goal: 

RQ1: What is the state-of-the-art of how to make procedural assets for use in populated virtual 

cities, i.e., buildings, humans, vegetation, and vehicles? 

RQ2: What is the state-of-the-art of how to make a procedurally generated populated virtual city 

themeable? 

RQ3: What is the state-of-the-art of how to handle crowds of people in a procedural way? 

RQ4: What research trends can help create procedurally generated populated virtual cities? 

RQ5: What gaps of knowledge (leading to open questions) are there in the current state-of-the-art 

of how to make a procedurally generated populated virtual city? 

 

2.2 Review Procedure 

The review procedure below shows how we performed the literature review in a quasi-systematic 

way: 

1. Specifying the research questions: We specified the research questions based on our 

general goal for the paper. 

2. Developing a review procedure: We developed a relaxed procedure for performing our 

literature review. 

3. Searching for sources: We searched for sources related to each research question using 

our predefined search terms. 

4. Screening found sources: Screening was done via matching the found sources (in the 

search step) against the predefined inclusion criteria. 

                                                           
1 Procedurally generated narrative puzzles like the one used in the prototype game “Stranded in 

Singapore” [7] are a possibility for the player to explore the city in a fun way. 

http://journal.seriousgamessociety.org/


Gaisbauer W., Hlavacs H., Procedural Attack! Procedural Generation for Populated Virtual Cities: A Survey pag. 21 

 
International Journal of Serious Games Volume 4, Issue 2, June 2017 

ISSN: 2384-8766 http://dx.doi.org/10.17083/ijsg.v1i4.47 

5. Synthesizing included sources: The sources included into the review (in the screening 

step) were synthesized into an overview about the state-of-the-art of how to make a 

procedural populated virtual city (i.e., the general goal of this paper). 

 

2.3 Searching and Screening Sources  

We initially used the following search terms for finding sources that answer the research questions 

stated above in the best possible way: 

RQ1: 

 “procedural” AND 

“cities” OR “buildings” OR “humans” OR “vegetation” OR “vehicles” 

 “virtual humans” 

 “procedural vegetation l-systems” 

 “vehicle animation” AND 

“maxscript” OR “autonomous” 

 

RQ2: 

 “neural artistic style” 

 “patch based” 

 “deep forger” 
 
RQ3: 

 “populating virtual environments” 

 

RQ42: 

 “procedural content generation games” 

 “interactive evolutionary computation” 

 “WaveFunctionCollapse3” 

 

RQ5: 

 “procedural content generation” AND 

“mit” OR “mixed initiative” 

 

The search terms listed above were just the initial input for starting our search, and we had to 

iteratively refine those terms in some cases using common sense to find the references used in this 

study (some references related to RQ4 were inspired by an online video2). Basically, we searched 

for sources using mostly Google Scholar and sometimes Google search engine using the 

previously defined search terms (also screening related articles). We would like to note that, while 

it was easy to find sources (related to RQ1) for procedurally generated buildings and vegetation, it 

was much harder for procedural humans and vehicles, as there is currently not much material in 

the scientific literature available, so we had to fall back on searching for sources more generally 

also using Google search engine. The sources were screened and included according to our 

predefined inclusion criteria (see Table 1). Strict inclusion criteria were used as hard logical 

conditions while loose inclusion criteria acted more like a bias towards what we were looking for 

when screening sources. We were mostly using common sense when deciding which sources to 

include based on our criteria trying to make the most of our relaxed review procedure regarding 

added value for the reader. 

                                                           
2 Part of the references for this research question was inspired by this Game Developers 

Conference talk in the AI Summit track [8]. 
3 This reference was suggested via personal communication by a peer student. 

http://journal.seriousgamessociety.org/


pag. 22 

 
International Journal of Serious Games Volume 4, Issue 2, June 2017 

ISSN: 2384-8766 http://dx.doi.org/10.17083/ijsg.v1i4.47 

Table 1. Inclusion criteria for the review. 

Criterion type Inclusion criteria 

Topic (strict) 
Source topic must be related to the procedural generation of populated virtual 

cities and address at least one of the research questions.
 

Citation impact (loose) The source should be "famous" (i.e., the source has a high number of citations). 

Publication date (loose) 
The source should be recent (we tried to prefer recently published sources, but a 

source being “famous” was more important). 

Type (loose) 
The source should help make a “photorealistic” procedural populated virtual city 

(like the one, for example, in the AAA game Grand Theft Auto V). 

 

2.4 Synthesizing Sources 

In total, we included 40 sources into our literature review using our review procedure for searching 

and screening sources. We synthesized all the included sources into an overview about the state-of-

the-art of how to make a procedural populated virtual city (to reach the general goal of this paper) 

divided into state-of-the-art procedural assets (see Section 3) and research trends and open 

questions (see Section 4). Section 3 is related to RQ1, RQ2, and RQ3 and Section 4 is related to 

RQ4 and RQ5. 

3. State-of-the-Art Procedural Assets 

3.1 Buildings 

Shape grammars (e.g., CGA shape4) have been used to procedurally generate very realistic and 

detailed buildings for different kinds of applications, at low cost: a modern city model with office 

buildings, a wealthy suburbia inspired by Beverly Hills with single family homes, and even a 

Pompeii model [5]. Other ways that have been successfully used to procedurally generate 

buildings are L-systems5 [11] (see  

Figure 2), markup languages [12] (e.g., for Introversion's suspended computer game Subversion6), 

and split grammars [14]. L-systems also have been utilized to generate whole complex cities (e.g., 

a virtual city with approximately 26000 buildings) with a complete street map and buildings at the 

push of a button [11]. The commercial software Esri CityEngine is an offspring of this technology 

[15]. A survey of procedural techniques for city generation is given in [16]. 

 

 
Figure 2. Example procedural buildings somewhere in a virtual Manhattan. 

 

 

                                                           
4 CGA shape is a kind of shape grammar, i.e., a unique “programming language” specified to 

generate architectural 3D content. The term CGA stands for Computer Generated Architecture. 

The idea of grammar-based modeling is to define rules that iteratively refine a design by creating 

more and more detail [9]. 

5 In 1968, Hungarian botanist Aristid Lindenmayer developed a grammar-based system to model 

the growth patterns of plants. L-systems (short for Lindenmayer systems) can be used to generate 

all kinds of recursive fractal patterns (usually vegetation but also buildings, road patterns, and even 

whole virtual cities). They are incredibly useful because they provide a mechanism for keeping 

track of fractal structures that require complex and multi-faceted production rules [10]. 

6 Nevertheless, the city generator technology demonstration looks very impressive, despite being 

from 2007 [13]. 

http://journal.seriousgamessociety.org/


Gaisbauer W., Hlavacs H., Procedural Attack! Procedural Generation for Populated Virtual Cities: A Survey pag. 23 

 
International Journal of Serious Games Volume 4, Issue 2, June 2017 

ISSN: 2384-8766 http://dx.doi.org/10.17083/ijsg.v1i4.47 

3.1 Themeable Cities  

An interesting idea to follow when creating procedural city assets is that each asset can be 

“themeable” (e.g., the user can apply dark themes that produce cities like the cyberpunk city 

universe described in the classic book Neuromancer [17], or even ancient kind of themes could be 

possible [18]). Texture generation for applying city themes is an important future research 

direction and interesting results might be achieved by using deep learning algorithms [19-22] and 

WaveFunctionCollapse [23]. Project Sprawl (see  

Figure 3) is an experimental open world role-playing simulation set in a procedurally generated 

cyberpunk city [24]. This project idea might serve as an inspiration for creating unique procedural 

buildings with a theme. 

 

 
Figure 3. Fragment from the development of Project Sprawl, a cyberpunk role-playing simulation. 

 

3.2 Humans 

The handbook of virtual humans, although somewhat dated, covers a lot of ground on how to make 

virtual humans [25], whereas this research [26] presents the basic algorithms used by MakeHuman, 

an open source tool for making 3D characters. The authors present a new interfacing idea that is 

much easier to use than conventional systems, which usually have thousands of parameters. 

Accessing the numerous parameters required in modeling the human form is made possible via a 

new widget which uses fuzzy logic. 

Of interest for character generation is also the following paper [27], which discusses a method 

for animating characters automatically, instead of manual rigging of characters (where the human 

animator has to specify its internal skeletal structure and to define how the input motion deforms 

its surface). 

The UMA (Unity Multipurpose Avatar) 2 package [28] is an asset for the Unity game 

development platform [29] that allows the user to create customizable characters. UMA is a 

vibrant open source community (the software is available on GitHub). The UMA package lets the 

user change 46 modifiable values to adjust everything from height to ear rotation, resulting in an 

almost infinite variety of custom characters. Also, the user can define her own extensions to extend 

the existing humanoid or fully replace it with her own idea of how it should be shaped.  

Figure 4 shows the UMA framework in action (the latest version can easily handle a hundred 

of unique avatars). 

 

 
Figure 4. 100 avatars in real time generated by UMA framework. 

 

 

 

http://journal.seriousgamessociety.org/


pag. 24 

 
International Journal of Serious Games Volume 4, Issue 2, June 2017 

ISSN: 2384-8766 http://dx.doi.org/10.17083/ijsg.v1i4.47 

3.3 Vegetation 

The usual way to create realistic procedural vegetation is via L-systems. A good and well known 

overview of this topic (although a bit dated) with a lot of visual examples is given in the book [30] 

and also in the more recent PCG book [31]. Very realistic looking animated trees that interact with 

wind in real time were achieved in [32] (see  

Figure 5), using a combination of statistical observations with physical properties for tree 

animation that can be animated using modern GPUs at low cost. In [33], self-organizing tree 

models were used to generate a wide range of realistic trees and bushes. It is interesting to note that 

in this research, the generated trees can be modified by a human user via procedural brushes, 

sketching, and editing operations such as pruning and bending of branches. Evolutionary methods 

for generating trees are discussed in [34] and in [35] for plants. A survey about the most used tools 

for procedural generation of plants is presented in [36]. 

 

 
Figure 5. Freeze frame of animated tree. 

 

3.4 Vehicles 

The approach presented in this research [37] (which uses PCG but also non-procedural techniques) 

is interesting “per se” for creating animation-ready vehicle models. Using the automated tools that 

are described in the upper-mentioned research, animating an automobile, or multiple automobiles 

of varying form and dimensions is possible with minimal input and setup. The presented program 

is targeted towards creating believable vehicles in a time efficient way. The program was capable 

of automatically creating articulation for 5 unique automobile models including a 2010 Dodge 

Challenger, a 2009 Dodge Charger, a 1957 Fiat 500, a 2009 Toyota FJ Cruiser and a city bus (see  

Figure 6). 

Complementing the research by Griffin described above is this research [38], which presents a 

method for synthesizing animations of autonomous space, water, and land-based vehicles in games 

or other interactive simulations. The research builds an animation framework suitable for 

interactive vehicle simulations, which can be used for synthesized animations of vehicles 

performing a variety of autonomous behaviors (e.g., Seek, Pursue, Avoid, Avoid Collision, and 

Flee). 

 

 
Figure 6. Animation-ready vehicle models. 

 

 

http://journal.seriousgamessociety.org/


Gaisbauer W., Hlavacs H., Procedural Attack! Procedural Generation for Populated Virtual Cities: A Survey pag. 25 

 
International Journal of Serious Games Volume 4, Issue 2, June 2017 

ISSN: 2384-8766 http://dx.doi.org/10.17083/ijsg.v1i4.47 

3.4 Crowd Patches 

This research [6] uses blocks containing a pre-computed local crowd simulation (called crowd 

patches) to make it possible to simulate densely populated large environments. A potentially 

infinite city with realistic and varied crowds can be simulated using this approach, where the 

virtual humans in the crowd also interact with each other and the environment in an intelligent 

way.  

Figure 7 shows the approach in action, i.e., a procedurally computed pedestrian street is displayed, 

where crowd patches are generated at run-time. 

 

 
Figure 7. Environment successfully populated with crowd patches. 

4. Research Trends and Open Questions 

4.1 Mixed-Initiative Mode 

To help the creative process of the user, the computer can assist the user in a mixed-initiative 

fashion (a good overview of the topic related to PCG is given in [1] and PCG for game designers 

in [39]). This assistance can come in various shapes, for example, the tool can suggest various new 

designs based on the current design of the asset (e.g., maps [40] or buildings [12]) that is being 

viewed and/or edited by the user. In these kind of systems, the user can then usually select one of 

these suggestions and the computer re-iterates and displays the next number of suggestions and so 

on. This way, new maps and buildings can be quickly generated that go into a certain direction 

which the designer envisions (e.g., maps with a lot of parks, or buildings that look like 

skyscrapers). 

 

4.2 Interactive Evolutionary Computation  

In the spirit of this idea, state-of-the-art PCG methods like generative grammars (e.g., L-systems 

[11][31], or markup languages [12] can be augmented with techniques from artificial intelligence 

(e.g., Interactive Evolutionary Computation (IEC) [41]) to create mixed-initiative tools that assist 

the human user (designer) to shape new PCG content. A closer examination of the interplay 

between PCG methods and IEC is presented in Figure 8. 

http://journal.seriousgamessociety.org/


pag. 26 

 
International Journal of Serious Games Volume 4, Issue 2, June 2017 

ISSN: 2384-8766 http://dx.doi.org/10.17083/ijsg.v1i4.47 

 
Figure 8. As depicted in the figure, the user chooses a PCG algorithm (e.g., implemented by L-

system, shape grammar, or markup language) from a palette, for example, a procedurally generated 

house (depicted by the violet star shape) (a), and observes the different suggested houses by the 

IEC system (depicted by the four star shapes) (b). With already a goal in mind, e.g., different 

houses that possess a common impression, e.g., expensive looking family houses (depicted by the 

orange star) (d), the user selects a specific instance of a house (b), and the computer generates the 

next generation of houses (c) that depend on the user's previous selection (b). After a few 

generations, the goal of the user is reached (d) and the “customized” house can be put into the 

virtual city. 

 

4.3 WaveFunctionCollapse 

Another starting point for creating new mixed-initiative city construction tools, is 

WaveFunctionCollapse (WFC), an internet famous computer program that was recently published 

on GitHub [23], which does bitmap & tilemap generation from a single example with the help of 

ideas from quantum mechanics based on the following main inspirations [42][43]. Those bitmaps 

and tilemaps can be used to generate interesting 3D cities that can then be used for various 

purposes. The WFC algorithm supports constraints. Therefore, it can be easily combined with 

other generative algorithms or with manual creation (e.g., autocompleting a city tilemap started by 

a human). This is ideal for making a mixed-initiative style tool because the computer can suggest 

new city designs based on the input of the human user and support what ideas are already in the 

user's head. This kind of mixed-initiative approach saves time and effort for the user and is likely 

to lead to more interesting results because the user has more time thinking about certain city 

designs (the computer can suggest a small number of different designs to the user) instead of 

wasting time with “micromanaging” like completing tilemaps. 

Tilemaps are easily compatible with crowd patches [6]. Each possible tile can be thought of as 

a kind of crowd patch (e.g., there can be predefined tiles for busy intersections like the “Shibuya 

Crossing” in Tokyo, casual shopping streets, or a Beverly Hills like area of houses with a lot of 

palms etc.) and the city can then be assembled from these tiles using the before mentioned mixed-

initiative mode. This combination hasn't been researched before (to the best knowledge of the 

author) and is especially well suited for creating living cities with ease. 

 

4.4 Open Questions 

The following quote is an interesting open question: “All the designers I can think of working on 

PCG come from computer science. How can we make procedural content generation accessible to 

non-programmers, or at least people who don't have a strong background on CS?” [44]. This 

points towards mixed-initiative tools because they are usually aimed at humans without much 

http://journal.seriousgamessociety.org/


Gaisbauer W., Hlavacs H., Procedural Attack! Procedural Generation for Populated Virtual Cities: A Survey pag. 27 

 
International Journal of Serious Games Volume 4, Issue 2, June 2017 

ISSN: 2384-8766 http://dx.doi.org/10.17083/ijsg.v1i4.47 

programming skills. In stark contrast to needing programming skills, these tools are often very 

supportive to non-programmers, everyday people, artists, or designers. Future work could try 

closing the gap (making PCG accessible to non-programmers) and search for these kinds of 

mixed-initiative tools that support the upper mentioned groups of people in the context of 

procedural generation of living cities. 

Another possible open question ready to be explored in future work, which hasn't been 

addressed yet, might be how a discussion between human and computer at the “meta-level” could 

look like in the scope of this topic (mixed-initiative systems). “Being able to communicate at a 

meta-level about the design tasks and outcomes has not been well-explored in mixed-initiative 

PCG work thus far” [45]. This communication at the meta-level could be a better way for the 

computer to explain itself (and its actions) to the human user, e.g., why did the computer select 

certain objects over others etc. 

5. Conclusions 

To summarize, this paper is based on the first author’s presentation during the doctorial 

consortium at the ICEC Conference 2016 in Vienna on Sept. 27. This paper provides an overview 

of current research for how to create populated virtual cities using just PCG methods, including 

research trends and open questions for inspiring future work. Emphasis is laid upon the state-of-

the-art of what procedural assets are available for city building (i.e., buildings including themeable 

cities, humans, vegetation, vehicles, and crowd patches are discussed) and a mixed-initiative mode 

that should help users to easily create a virtual city shaped to their desire. Future work could build 

upon this survey and use and implement one or more of the procedural assets and/or a mixed-

initiative mode as described here for building a virtual city or try to tackle one or more of the open 

questions. 

References 

[1] Shaker N., Togelius J., Nelson M.J., Procedural Content Generation in Games: A Textbook 

and an Overview of Current Research. 2015. 

[2] Hello Games, No Man's Sky, 09-Aug-2016. [Online]. Available: http://www.no-mans-

sky.com/. [Accessed: 02-May-2017]. 

[3] Stubbs D., The Hit, 04-Mar-2017. [Online]. Available: https://adfp.itch.io/the-hit. [Accessed: 

02-May-2017]. 

[4] Thompson M.W., Evaluating the Hybridisation of Procedural Content Generation With a 

Design-Centric Editor. 2015. 

[5] Müller P., Wonka P., Haegler S., Ulmer A., Van Gool L., Procedural Modeling of Buildings, 

presented at the ACM SIGGRAPH 2006 Papers, New York, NY, USA, 2006, pages 614–623. 

https://doi.org/10.1145/1179352.1141931 

[6] Yersin B., Maïm J., Pettré J., Thalmann D., Crowd Patches: Populating Large-scale Virtual 

Environments for Real-time Applications, presented at the Proceedings of the 2009 

Symposium on Interactive 3D Graphics and Games, New York, NY, USA, 2009, pages 207–

214. https://doi.org/10.1145/2538528.2538538 

[7] Fernández-Vara C., Thomson A., Procedural Generation of Narrative Puzzles in Adventure 

Games: The Puzzle-Dice System, presented at the Proceedings of the The Third Workshop on 

Procedural Content Generation in Games, New York, NY, USA, 2012, pages 12:1–12:6. 

[8] Sturtevant N., Smith G., Togelius J., Making Things Up: The Power and Peril of PCG, Mar-

2015. [Online]. Available: http://www.gdcvault.com/play/1022134/Making-Things-Up-The-

Power. [Accessed: 02-May-2017]. 

[9] Esri R&D Center Zurich, CityEngine Help. [Online]. Available: 

http://cehelp.esri.com/help/index.jsp?topic=/com.procedural.cityengine.help/html/manual/cga/

basics/toc.html. [Accessed: 02-May-2017]. 

[10] Shiffman D., The Nature of Code. 2012. 

[11] Parish Y.I.H., Müller P., Procedural Modeling of Cities, presented at the Proceedings of the 

28th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, 

USA, 2001, pages 301–308. https://doi.org/10.1145/383259.383292 

[12] Martin A., Lim A., Colton S., Browne C., Evolving 3D Buildings for the Prototype Video 

Game Subversion, in Applications of Evolutionary Computation, Volume 6024, Number 12, 

http://journal.seriousgamessociety.org/


pag. 28 

 
International Journal of Serious Games Volume 4, Issue 2, June 2017 

ISSN: 2384-8766 http://dx.doi.org/10.17083/ijsg.v1i4.47 

C. Di Chio, S. Cagnoni, C. Cotta, M. Ebner, A. Ekárt, A. I. Esparcia-Alcazar, C.-K. Goh, J. J. 

Merelo, F. Neri, M. Preuß, J. Togelius, and G. N. Yannakakis, Eds. Berlin, Heidelberg, 2010, 

pages 111–120. 

[13] Introversion Software, Subversion City Generator Introversion Software, YouTube, 22-Nov-

2011. [Online]. Available: https://www.youtube.com/watch?v=FR9xI0GgrBY. [Accessed: 02-

May-2017]. 

[14] Wonka P., Wimmer M., Sillion F., Ribarsky W., Instant Architecture, presented at the ACM 

SIGGRAPH 2003 Papers, New York, NY, USA, 2003, Volume 22, Number 3, pages 669–

677. https://doi.org/10.1145/1201775.882324 

[15] Esri, Esri CityEngine. [Online]. Available: http://www.esri.com/software/cityengine. 

[Accessed: 02-May-2017]. 

[16] Kelly G., McCabe H., A survey of procedural techniques for city generation, ITB Journal, 

Volume 14, 2006. 

[17] Gibson W., Neuromancer. 1984. 

[18] Trescak T., Bogdanovych A., Simoff S., City of Uruk 3000 BC: Using genetic algorithms, 

dynamic planning and crowd simulation to re-enact everyday life of ancient Sumerians, 

presented at the Proceedings of the Simulation of the Past to Understand Human History 

Conference, 2014. 

[19] Liang X., Zhuo B., Li P., He L., CNN based texture synthesize with Semantic segment, arXiv 

preprint arXiv:1605.04731, 2016. 

[20] Gatys L.A., Ecker A.S., Bethge M., A neural algorithm of artistic style, arXiv preprint 

arXiv:1508.06576, 2015. 

[21] Champandard A.J., Semantic Style Transfer and Turning Two-Bit Doodles into Fine 

Artworks, arXiv preprint arXiv:1603.01768, 2016. 

[22] Champandard A.J., Deep Forger, 2015. [Online]. Available: https://deepforger.com/. 

[Accessed: 02-May-2017]. 

[23] ExUtumno, WaveFunctionCollapse, GitHub, 11-Oct-2016. [Online]. Available: 

https://github.com/mxgmn/WaveFunctionCollapse. [Accessed: 02-May-2017]. 

[24] Delacian, Delacian's Scrapbook - Project Sprawl - Cyberpunk Procedural City Generation, 

Tumblr. [Online]. Available: http://delacian.tumblr.com/. [Accessed: 02-May-2017]. 

[25] Magnenat-Thalmann N., Thalmann D., Handbook of virtual humans. 2005. 

[26] Bastioni M., Re S., Misra S., Ideas and Methods for Modeling 3D Human Figures: The 

Principal Algorithms Used by MakeHuman and Their Implementation in a New Approach to 

Parametric Modeling, presented at the Proceedings of the 1st Bangalore Annual Compute 

Conference, New York, NY, USA, 2008, pages 10:1–10:6. 

https://doi.org/10.1145/1341771.1341782 

[27] Baran I., Popović J., Automatic Rigging and Animation of 3D Characters, presented at the 

ACM SIGGRAPH 2007 Papers, New York, NY, USA, 2007. 

https://doi.org/10.1145/1275808.1276467 

[28] UMA Steering Group, UMA 2 - Unity Multipurpose Avatar, Unity Asset Store, 27-Apr-2015. 

[Online]. Available: https://www.assetstore.unity3d.com/en/#!/content/35611. [Accessed: 02-

May-2017]. 

[29] Unity Technologies, Unity - Game Engine. [Online]. Available: https://unity3d.com/. 

[Accessed: 02-May-2017]. 

[30] Prusinkiewicz P., Lindenmayer A., The Algorithmic Beauty of Plants. New York, NY, USA, 

1996. 

[31] Togelius J., Shaker N., Nelson M.J., Grammars and L-systems with applications to vegetation 

and levels, in Procedural Content Generation in Games: A Textbook and an Overview of 

Current Research, N. Shaker, J. Togelius, and M. J. Nelson, Eds. 2015. 

[32] Habel R., Kusternig A., Wimmer M., Physically Guided Animation of Trees, Computer 

Graphics Forum (Proceedings EUROGRAPHICS 2009), Volume 28, Number 2, 2009. 

[33] Palubicki W., Horel K., Longay S., Runions A., Lane B., Mech R., Prusinkiewicz P., Self-

organizing Tree Models for Image Synthesis, presented at the ACM SIGGRAPH 2009 Papers, 

New York, NY, USA, 2009, pages 58:1–58:10.  https://doi.org/10.1145/1576246.1531364 

[34] Pedrosa D.S., GALSYS - Procedural Creation of Trees: Through Combination of Genetic 

Algorithms and Lindenmayer Systems. 2014. 

[35] Sims K., Artificial Evolution for Computer Graphics, presented at the Proceedings of the 18th 

Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, 

1991, pages 319–328. https://doi.org/10.1145/122718.122752 

http://journal.seriousgamessociety.org/


Gaisbauer W., Hlavacs H., Procedural Attack! Procedural Generation for Populated Virtual Cities: A Survey pag. 29 

 
International Journal of Serious Games Volume 4, Issue 2, June 2017 

ISSN: 2384-8766 http://dx.doi.org/10.17083/ijsg.v1i4.47 

[36] la Re de A., Abad F., Camahort E., Juan M.C., Tools for Procedural Generation of Plants in 

Virtual Scenes, in Computational Science – ICCS 2009, Volume 5545, Number 89, G. Allen, 

J. Nabrzyski, E. Seidel, G. D. van Albada, J. Dongarra, and P. M. A. Sloot, Eds. Berlin, 

Heidelberg, 2009, pages 801–810. 

[37] Griffin C.C., Automated Vehicle Articulation and Animation: A Maxscript Approach, 2010. 

[38] Go J., Vu T., Kuffner J.J., Autonomous Behaviors for Interactive Vehicle Animations, 

presented at the Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on 

Computer Animation, Aire-la-Ville, Switzerland, Switzerland, 2004, pages 9–18. 

https://doi.org/10.1145/1028523.1028525 

[39] Smith G.M., Expressive Design Tools: Procedural Content Generation for Game Designers, 

2012. 

[40] Liapis A., Togelius J., Sentient Sketchbook: Computer-Aided Game Level Authoring, 

presented at the Proceedings of the 8th Conference on the Foundations of Digital Games, 

2013, pages 213–220. 

[41] Takagi H., Interactive evolutionary computation: fusion of the capabilities of EC optimization 

and human evaluation, Proceedings of the IEEE, Volume 89, Number 9, 2001. 

https://doi.org/10.1109/5.949485 

[42] Merrell P.C., Model Synthesis, 2009. 

[43] Harrison P.F., Image Texture Tools: Texture Synthesis, Texture Transfer, and Plausible 

Restoration, 2006. 

[44] Fernández-Vara C., Thoughts on Procedural Content Generation, 29-Jun-2012. [Online]. 

Available: http://gambit.mit.edu/updates/2012/06/thoughts_on_procedural_content.php. 

[Accessed: 02-May-2017]. 

[45] Togelius J., Shaker N., Nelson M.J., Mixed-initiative Content Creation, in Procedural Content 

Generation in Games: A Textbook and an Overview of Current Research, N. Shaker, J. 

Togelius, and M. J. Nelson, Eds. 2015. 

http://journal.seriousgamessociety.org/

