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Abstract  

A realistic representation of the traffic participants is a key feature of serious 

games for driving. We propose a novel method for improving the behavioral 

planning of non-player vehicles (NPVs) by supporting implementation of (i) 

“human-like”, high-level decision making and (ii) different driving styles. The 

method relies on the deep reinforcement learning (DRL) technology, which is 

gaining ever more interest in the real-world automated driving research. We 

designed a system architecture including advanced driving assistance systems 

(ADAS) and trained the agent in the highway-env DRL environment. 

Compared to a low-level decision making system, our system performs better 

both in terms of safety and speed. Moreover, the proposed approach allows 

reducing the number of training steps by more than one order of magnitude. 

This makes the development of new models much more efficient. As a second 

main contribution, we demonstrate that it is possible to train agents 

characterized by different driving behaviors, by tweaking the weights of the 

factors of a general DRL reward function. This approach avoids heuristic 

coding of the driving styles, saving development and maintenance time. The 

developed agent models can then be seamlessly deployed as NPVs in any 

target SG in the same development environment (i.e., highway-env). 

Furthermore, the information and lessons learned presented in this article can 

be useful to effectively and efficiently train similar agents in their target SG 

environment. 

1. Introduction 

A significant design issue for serious games (SGs) for car driving (e.g., [1]) is given by learning 

transfer, since playing a game is very different from driving a 1+ ton vehicle with several lives 

continuously at stake. However, important aspects can be learned or at least experienced also 

through simulation/gaming, and it is important that SGs are well-designed to meet their specific 

instructional target. One key aspect in this context is given by the modeling of non-player 
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vehicles (NPVs), which constitute the traffic around the vehicle driven by the player, namely 

the ego vehicle (EV). NPVs play a crucial role in SGs for traffic instruction [2] and safety 

awareness [3], as traffic is a key context of the simulation [4], [5].  

NPVs are completely automated vehicles, that continuously take decisions during the game 

to simulate the traffic. Decision-making is necessary for the behavioral planning of a vehicle, 

which includes path/trajectory planning and tracking (e.g., [6], [7]). An emerging technology 

for implementing decision making tasks is deep reinforcement learning (DRL). DRL consists 

in using deep neural networks (DNNs) as the models mapping observations to actions that are 

trained through reinforcement learning (RL). RL is a branch of machine learning (ML) in which 

an agent (i.e., the model) learns, through experience, to take actions in an environment in order 

to maximize the cumulative reward in an episode [8], [9]. Based on literature about real-world 

automated driving (e.g., [10]–[14]), we argue that DRL could be useful to develop realistic 

NPVs for SGs, also faithfully implementing different driving styles (e.g., standard, comfort, 

aggressive), for a more realistic and difficulty-level-adaptable representation of the traffic 

surrounding the ego vehicle. 

An RL agent learns by interacting with the environment in which it is immersed. Interactions 

consist of observations and actions. An action is a decision taken by the agent based on the 

latest observation provided by the environment. Agents are typically trained in configurable 

simulation environments. Highway-env is a collection of simple 2D bird-eye view 

environments for training RL agents in automated driving and tactical decision-making tasks, 

particularly oriented to highway settings [15], [16], even if other car-related scenarios are 

available as well (e.g., intersection, roundabout, parking lots). Highway-env, developed by 

Edouard Leurent [17], is one of the environments provided within Farama Foundation 

Gymnasium (previously Gym [18]), an open-source Python library for developing and 

comparing RL algorithms by providing a standard application programming interface (API) to 

communicate between learning algorithms and driving environments.  Highway-env directly 

supports high-level concepts such as vehicles, lanes, etc., and offers several pre-defined 

simulation environments representing different driving scenarios, such as driving on a 

highway, navigating a roundabout, parking, etc... In addition to the learning agent (i.e., the 

EV), a highway-env environment can also be easily populated by concurrent NPVs and 

customized according to special constraints and requirements, e.g., by defining the number of 

NPVs within a simulation, specifying the spacing between them or their density.  

Highway-env provides two alternative types of low-level input interface to an RL model: 

one based on discrete actions (faster, slower, left, right, idle) and one based on continuous 

actuators (throttle level, with negative values indicating the braking; and steering angle). 

However, state-of-the-art vehicular systems involve higher-level advanced driving assistance 

systems (ADAS), such as the Adaptive Cruise Control (ACC). Thus, in this work, we are 

interested in exploring the behavior of NPVs driven by a higher-level RL-based decision 

maker, which exploits the above mentioned ADASs. Through the development choice of 

targeting higher-level decision making, we expect to (i) achieve a more realistic behavior of 

state-of-the-art vehicles, (ii) better reflect the human reasoning when driving a car, and (iii) get 

benefits in terms of model training, which is the most critical aspect of any machine learning 

(ML) algorithm, particularly in DRL. In fact, the action space of higher-level decisions may be 

much narrower than that of the above-mentioned discrete actions or continuous actuators, 

potentially implying a significant reduction in training time, which would be very useful if a 

game designer would have to train different agents for different driving styles. Particularly, as 

we will see in the next section, we are interested in three actions: “keep lane” (i.e., ACC), 

“overtake” and “go to the right-most lane” (typically after an overtake). 

The goal of this article is to study the development through DRL of high-level DM agents 

(i.e., able to exploit state of the art ADAS) implementing different driving styles, that can be 
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then employed in SGs as NPVs for a realistic and instructionally useful implementation of the 

traffic. 

The remainder of the article is organized as follows: Section 2 describes the current state of 

the art related to the topic, Section 3 presents the environment used and introduces the 

reinforcement learning paradigm, Section 4 is devoted to the presentation of the experiment 

performed, Section 5 summarizes the experimental results obtained, and finally Section 6 

concludes. 

2. Related Work 

While a large number of games have been developed in the car racing area, SGs to support 

specific aspects of automotive driving are much rarer. The closeness between the virtual world 

of the SG and the real world should guarantee realism and user immersiveness to be effective. 

The Good Drive game [1] presents players with the major sequences that cover the entire 

French driving license training program. The scenes involve passing and overtaking in rural 

and urban areas, and at different times of the day and weather conditions. The player must 

control his vehicle, follow the road rules, and adapt to what is happening in the environment. 

The presentation website stresses that Good Drive “does not aim to replace traditional methods 

for learning to drive; instead, it serves to support these”. Car Driving School Simulator [19] is 

a popular 3D commercial game for driving training before going on the road, with the main 

goal of learning to respect traffic laws, use turn signals, etc. 

Gounaridou et al. [3] present the implementation of an educational game on traffic behavior 

awareness through the main stages of analysis, design, development, and evaluation. Reported 

results reveal that a properly developed educational game could enhance traffic awareness 

through experiential and mediated learning. Likitweerawong et al. [20] present a virtual reality 

SG providing players with the knowledge of the basic rules before they drive a real car on a 

real road. User tests revealed that the game can combine enjoyment with learning basic driving 

elements. Hrimech et al. [21] investigate the effects of the use of SG in eco-driving training. 

Results demonstrate that the serious game influences positively the behavior of inexperienced 

drivers in ecological driving.  

Variability is not an insignificant factor when it comes to games. It refers to the ability to 

provide the user with multiple gaming experiences, to avoid the game being constant and 

repetitive. In the SG context variability plays a major role in making games as realistic and 

believable as possible [22]. Kichmeier et al. [23] investigate content personalization techniques 

to add variability into SGs, in order to adapt the interactive application to the player and then 

provide the possibility of explorative learning processes. Zielke et al. [24] state that 

believability through natural actions and intelligent interaction is the primary purpose of non-

player characters (NPCs), analogously to NPVs in driving and racing games. Therefore, the 

addition of different driving styles in driving and racing SGs becomes an important tool for 

adding variability and realism within the game. Massoud et al. [25] propose an algorithm to 

profile the driving style of the player to provide feedback in order to keep the driver aware of 

the safety and the fuel economy, highlighting that an aggressive driving style may be more 

fuel-consuming prone as well as crash-prone. Sagberg et al. [26] outline a tentative framework 

for understanding the definition of driving style, proposing it as a composition of individual 

driving skills and personality characteristics, social context, and cultural values, along with the 

technology of the vehicle itself. Results demonstrate the multidimensionality and complexity 

of the concept of driving styles. Bellotti et al. [27] illustrate a serious game whose goal is to 

reward and coach the driver after processing vehicular data. The relative score is displayed on 

the automotive dashboard, and it is designed to enhance and improve driving skills and 

behavior. Troullinos et al. [28] enrich the SUMO simulator [29] by first extracting patterns and 

features from real participants and then creating a virtual population of drivers, each with its 
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driving style. The pool of drivers may be generated according to population behavior 

distribution that is more appropriate to a given problem or scenario. This procedure may be 

used to improve the overall realism of traffic simulations.  

Massoud et al. [30] present a set of fuzzy logic models that process signals from basic 

vehicular sensors (e.g., speed and throttle position) in order to estimate fuel consumption, 

which is then usable in different ways in reality-enhanced SGs. As a complementary tool, 

Edgine supports a smart configuration of limited-resource edge devices in order to send the 

proper information to a cloud-based measurement management system [31]. Westera et al. [32] 

provide an important general resource, as it provides a comprehensive overview of artificial 

intelligence (AI) for serious games. Particularly, it presents a set of advanced game AI 

components that enable pedagogical affordances and that can be easily reused across game 

engines and platforms. All components have been applied and validated in SGs tested with real 

end-users. In the specific area of driving games, Tomilson and Melder [33] describe at a high 

level the requirements, architecture, and best practices for high-speed vehicle racing AI. Perot 

et al. [34] exploit the WRC6 rally game, with realistic physics and graphics, to train an 

Asynchronous Actor-Critic (A3C) reinforcement learning (RL) model in an end-to-end fashion. 

The authors also propose an improved reward function to learn faster. Fakhry [35] presents a 

Deep Q-Network (DQN) developed for driving a car in a simple racing game.  

As the literature lacks information about DRL training of NPVs exhibiting different driving 

styles, our goal is to advance the state of art by investigating this field also by exploiting 

“human-like”, high-level DM strategy to increase realism and, as a side effect, ease of 

development. 

3. Reinforcement Learning and highway-env development 

environment 

RL is one of the three main paradigms of ML, besides Supervised and Unsupervised Learning. 

The goal of RL, as shown in Figure 1, is to train an agent, which consists in making it learn a 

policy to maximize the outcome of its actions applied to an uncertain dynamic system. Since 

the true relationship between actions and the state of the dynamic system is unknown, the agent 

is trained with an empirically approximated outcome function called the Reward Function (RF). 

The training consists of a Monte Carlo trial-and-error approach, usually in a simulated 

environment, where the agent can explore different strategies and get the corresponding 

outcome given by the RF. Thus, the RF has a key role in shaping the agent’s behavior. When 

a model is learned using a Deep Neural Network, this paradigm is called Deep Reinforcement 

Learning (DRL)[36]. 

 



L. Forneris et al.  

 
International Journal of Serious Games I Volume 10, Issue 4, December 2023 157 

 

 

Figure 1. The RL schema. 

A variety of algorithms have been developed for training DRL models. They can be roughly 

divided into three classes: 

• Value-based methods (e.g., Q learning [37] and DQN), that choose the next action of 

an agent by estimating the cumulative benefit of each possible action. 

• Policy-based methods, including policy gradient methods, that optimize a performance 

objective (typically the expected cumulative reward) through gradient ascent [38]. 

• Model-based methods, which provide a model of the environment to predict how it 

responds to the agent’s actions [39]. 

 

For the online training procedure of our models, we used the Proximal Policy Optimization 

(PPO) algorithm [40]. The PPO is a policy gradient method and supports discrete action spaces, 

as in our case (“keep lane”, “overtake”, “right-most lane”). Motivated by the shortcomings of 

other popular policy gradients algorithms, such as Trust Region Policy Optimization (TRPO) 

[41] and A2C [42], which suffered from training stability issues and slow policy convergence, 

PPO introduces smaller policy update steps and a clipped objective function to ensure stable, 

generalized and efficient learning. Thanks to these features and its implementation s implicity, 

PPO has quickly gained popularity in a wide range of DRL-related research fields, including 

game-playing and robotic control [43]–[45]. 

Our development relies on the Highway-env environment, which exploits Stable-Baselines3 

[46] as a DRL support library. Regarding the DRL algorithm, we use the state-of-the-art Stable-

Baselines3 PPO implementation [40]. The environment represents a multi-lane highway 

(Figure 2), where the ego vehicle (EV) is controlled by a DRL agent and has the goal of 

covering as much distance as possible, avoiding collisions with NPVs. 

To avoid a likely source of confusion, it is important to highlight that here we are speaking 

of NPV in the training environment, while the EV is the subject of the training. On the other 

hand, once the EV has been trained, it will be usable as a realistic NPV in an SG, as explained 

in the Introduction. 

NPVs in the training environment follow a heuristic behavior, with some randomness 

applied in order to avoid over-fitting on the agent’s part [47]. We also added the number of 

vehicle randomization at each episode and modified the behavior of the NPVs to improve 

realism and the EV road navigation. In particular, NPVs drive at a different speed depending 

on their current lane (slower on the right lane, faster on the left). The discrete lane change 
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decisions are given by the Minimizing Overall Braking Induced by Lane Changes (MOBIL) 

model [17], [48].  

The RF is key to shaping the behavior of an agent, for instance by penalizing high or low 

speed, or frequent changes of the lane. Thus, a main goal of our research is to explore the 

shaping and tweaking of different RFs to represent different driving styles, as described in the 

next section. 

 

 

Figure 2. Snapshot from highway-env. The EV is colored green; NPVs are light blue. 

4. Experiment 

This chapter illustrates our experiment to train agents featuring different driving styles. We 

first outline the dynamic task environment, then the state observed by the agent and its action’s 

space, and finally, the RF and its parameter values that we propose to achieve the desired 

differentiation in driving behavior. 

4.1 Environment 

The adopted training environment, depicted in Figure 2, is composed of an EV and several 

NPVs, whose number is chosen randomly at the beginning of each episode between 15 and 20, 

that travel along a 3-lane straight highway. The above number of NPVs has been chosen to 

simulate an intense but flowing highway traffic, with an average of about 7 to 8 vehicles ahead 

of the EV, in a 0-100 m. range, at any time. The maximum allowed speed is 36 m/s (130 km/h). 

According to the default environment settings, a vehicle cannot drive outside the roadway. The 

RF, as well as many different environment parameters, can be modified through the default 

Gym configuration interface by overriding the ‘env.config.update’ method and specifying the 

desired key-value pairs[49]. 

4.2 Observations 

The observations provided by the environment are the 5 default features defined in highway-

env: presence (whether a vehicle is present or not in the current scene), longitudinal and lateral 

position and velocities; for the EV and the V closest vehicles, where V is a parameter, set to 6 

in our case. The employed observation (i.e., kinematic observation [17]) is a V * F matrix, 

where F is the number of observed features. Hence, the considered kinematic observation 

matrix is a 7 * 5 matrix in our case, of which an example is provided in Eq. (1):  

 

The first row always refers to the EV, while the remaining rows describe, in ascending order 

of Euclidean distance, the V closest vehicles. The observation is normalized within a fixed 

𝐾 =  

[
 
 
 
 
 
 
1 1.00 0.00 0.45 0.00
1 0.19 0.35 −0.22 −0.01
1 0.41 0.33 −0.11 0.00
1 0.46 0.67 −0.22 0.00
1 0.93 0.67 −0.20 0.00
0 0 0 0 0
0 0 0 0 0 ]

 
 
 
 
 
 

 
(1) 
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range: x and y within [-100, 100] and vx and vy within [-20, 20]. The coordinates are relative to 

the EV, except for the EV itself, which stays absolute. If less than V vehicles are observed in 

the current scene, the last rows are filled with zeros. 

4.3 Action space 

Our approach involves raising the level of the agent decision making (DM), by keeping into 

account availability of state-of-the-art ADAS in vehicles (e.g., the ACC). Thus, we built a 

decision hierarchy where the EV takes high-level decisions while the ADAS (of which we 

developed a simple model implementation) translates such decisions into the low-level agent 

action space (i.e., “faster”, “slower”, “lane right”, “lane left”, “idle”), which is implemented in 

the highway-env. Particularly, we define the following discrete high-level actions for the 

decisions of the agent: 

• Keep lane: the ACC is activated. If a vehicle is present ahead in the lane, the EV keeps a 

safe time headway. Otherwise, it goes at the maximum speed. 

• Overtake: change lane to the left so as to make an overtake if a vehicle is present in the ego 

lane ahead. Otherwise, the Cruise Control is activated. 

• Go to the rightmost lane: change the lane to the right, wait one second, and repeat this, until 

the rightmost lane is reached. 

Figure 3 provides a complete overview of the system. Figure 4 shows the vehicular 

behaviors enacted by the proposed actions. In our design, the EV includes serial subsystems 

organized in hierarchy [50]: the higher-level Decision Maker (DM) and the lower-level 

Behavior Executor (BE). The DM gets the observations from the environment and selects the 

appropriate high-level action accordingly. 

 

 

Figure 3. High-level schema of the overall system architecture. 
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Figure 4. Flowcharts of the high-level behaviors.  

The high-level actions are received by the BE, which implements the appropriate behavior 

as a series of low-level controls (throttle levels and steering angles). Such values are clipped 

to enforce physical feasibility before feeding the environment, whose interface is left 

unchanged. Here we stress that this architecture can implement different behaviors, 

corresponding to different driving styles. For instance, the DM might indicate the EV to left -

overtake vehicles at the maximum possible speed in case of aggressive driving behavior, while 

a more conservative EV might prefer following the vehicle in front, switching on the ACC.  

Each behavior is executed in a loop, which is terminated as soon as the DM chooses a 

different action than the previous one. The BE implementation simulates the behavior of state -

of-the-art onboard ADAS through simple proportional integrative derivative (PID) controllers 

in a closed-loop control schema. 

For deriving the acceleration and steering command, we used a straightforward bicycle 

kinematic model of the vehicle [51], detailed in Eq. (2): 

 

where (x,y) is the position of the vehicle, v its forward speed, ψ its heading, a the 

acceleration command, and β the slip angle (i.e., the angle between the direction of the vehicle 

and the direction of the front wheels) at the center of gravity, defined in Eq. (3): 

where δ is the front wheel angle, which is used as the steering command. 

We define a simulation step as a time interval in which the environment state and the derived 

agent observations are updated according to the changes in the scene. The frequency of the 

�̇�  = vcos(𝜓 + 𝛽)

�̇�  = vsin(𝜓 + 𝛽)
�̇�  = 𝑎

�̇�  =
𝑣

𝑙
sin𝛽

 
(2) 

𝛽 = tan−1 (1/2tan 𝛿) (3) 
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simulation steps is set to 5 Hz. A training step is composed of multiple simulation steps after 

which the agent’s behavior is updated according to the state-action-reward tuples for each 

simulation step in the algorithms replay buffer. All the variables of the kinematic model are 

calculated at each model simulation step, and such calculations allow the propagation of the 

vehicle state. 

4.4 Reward 

We define the RF for this problem as the weighted sum of 3 rewards that are provided by the 

environment: 

where: 

• 𝑅𝑐𝑜𝑙𝑙 (Eq. 5) is the collision reward and is equal to -1 when a collision happens. In that 

case, the training episode is also terminated, in order to prevent the agent to accumulate 

positive rewards. On the other hand, if the EV reaches the end of the simulation without 

crashing, then 𝑅𝑐𝑜𝑙𝑙 is equal to 0. 

 

 

• 𝑅𝑟𝑚𝑙 (Eq. 6) is the right-most lane reward, which is employed to encourage the EV to keep 

the right-most lane whenever it is possible. The maximum reward is given when the RV 

travels on the right-most lane. The reward linearly decreases until the left-most lane, where 

it drops to 0. In (Eq. 6), N is the number of lanes in the road. Differently from the previous 

one, this reward is dense, meaning that it is given to the learning agent at each simulation 

step. 

 

• 𝑅ℎ𝑠 (Eq. 7) is the high-speed reward and is designed to encourage the EV to keep high 

traveling speed values. This reward is dense, as well. The maximum reward is attributed 

when the cruising speed of the EV is between a certain interval, which in our case goes 

from roughly 30 to 36 m/s (108 to 130 km/h). 

𝑠𝑐𝑎𝑙𝑒𝑑 𝑠𝑝𝑒𝑒𝑑 is a linear interpolation described as: 

where 𝑙𝑚𝑖𝑛 and 𝑙𝑚𝑎𝑥 are respectively the extremes of a speed range in which the agent 

receives a positive reward and 𝑣 its forward speed. 

The output value of dense rewards is linearly mapped between 0 and 0.1 before being fed 

to the DRL algorithm, while the collision reward is added as is. This normalization process is 

necessary to avoid a significant increase in the numerical value of the total reward and, 

therefore, to stabilize the learning phase. 

In the next section, we analyze how, by changing the weights of the proposed reward terms, 

it is possible to model three different driving styles, such as: 

• Standard: normal behavior adopted when driving on a highway. It should involve a limited 

number of collisions. 

𝑅 = 𝑐𝑐𝑜𝑙𝑙 ∙ 𝑅𝑐𝑜𝑙𝑙  + 𝑐𝑟𝑚𝑙 ∙ 𝑅𝑟𝑚𝑙  + 𝑐ℎ𝑠 ∙ 𝑅ℎ𝑠 (4) 

𝑅𝑐𝑜𝑙𝑙 = {
−1 𝑖𝑓 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑐𝑟𝑎𝑠ℎ𝑒𝑠

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5) 

R𝑟𝑚𝑙 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐸𝑉 𝑙𝑎𝑛𝑒 𝑖𝑛𝑑𝑒𝑥

𝑁
 (6) 

𝑅ℎ𝑠 =  𝑐𝑙𝑖𝑝(𝑠𝑐𝑎𝑙𝑒𝑑 𝑠𝑝𝑒𝑒𝑑, 0, 1) (7) 

𝑠𝑐𝑎𝑙𝑒𝑑 𝑠𝑝𝑒𝑒𝑑 =  (
𝑣 − 𝑙𝑚𝑖𝑛 

𝑙𝑚𝑎𝑥 − 𝑙𝑚𝑖𝑛
) (8) 
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• Comfort: this driving style shows a preference to occupy the rightmost lane, and travel at 

a relatively slow speed. 

• Aggressive: behavior that implies high traveling speed, a high number of overtaking 

maneuvers, and quick decision changes. 

5. Experimental results 

This section presents the results obtained by testing the above described design. Results refer  

to a training of the agents performed on a laptop with an Intel Core i7-12700H CPU, 16 GB of 

RAM, and an NVIDIA RTX 3060 GPU.  

For the DRL training, we employed a PPO algorithm and tuned the hyperparameters by 

setting the number of policy update steps to 4096, batch size to 128, gamma to 0.997, and 

entropy coefficient to 0.1. In PPO, a policy update step occurs after a specified number of 

simulation steps (4096 in our case), such as for the mentioned training step, and involves 

selecting a new agent policy, and consequently updating the policy gradient, on the basis of the 

state-action-reward-new state tuples observed since the last policy update step.  The gamma 

hyperparameter refers to the algorithm’s discount factor used to balance the newly obtained 

rewards in the agent’s objective function. In this context, the entropy coefficient quantifies the 

degree of uncertainty the agent has about its actions given a particular state. In PPO, it is used 

to encourage the model to explore the environment by penalizing excessively deterministic and 

fixed behaviors on which the agent may already have converged.  

The DNN configuration is the highway-env default 2-layer multi-layer perceptron (MLP), 

with 64 neurons per layer. We used a 3-lane highway environment (Figure 2), setting policy 

frequency (i.e., decision rate) to 1 Hz, in order to give the agent sufficient time to observe the 

complete effects of its previous decision. The training procedure consists of about 5000 

episodes, each one of a maximum length of 60 seconds, and encompassing about 200k training 

updates. The whole training is completed within 90 minutes. 

5.1 High-level Decision Making 

Figure 5a shows the evolution of the training of a standard agent in a Tensorboard view [52]. 

The standard agent has the following weights for the RF terms: -3 for collisions, 0.4 for speed, 

and 0.2 for the right lane (negative weights indicate penalties). The average episode length 

reaches its maximum (i.e., 60 seconds, meaning no collisions occurred) at around 60K 

iterations. The average total reward (Figure 5b) has a similar shape since it is strongly 

influenced by the collision penalty. We notice that the training is quite rapid, smooth , and 

stable, without catastrophic forgetting [53], which frequently affects the DRL training. 

 

 
 

 

(a) 

 

 

(b) 

Figure 5. Training metrics (a) episode length and (b) total reward as a function of number of iterations. 
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Table 1.  Performance comparison over sixty 60-second episodes 

Model Collisions per episode Km per episode 

High-level DM agent 0 1.83 

Low-level agent [15] 0.03 1.76 

 
Table 2. Environment settings 

Model Speed levels 

[m/s] 

No. vehicles per 

episode 

Traffic density No. reward 

functions 

High-level DM agent [20, 25, 30] 10 0.5 3 

Low-level agent [15] Cont(20, 36) Uniform(10-20) 0.4 11 

 

It appears that the high-level agent performs better under both the considered dimensions. 

It is important to highlight that the training of the higher-level agent took more than one order 

of magnitude less training steps than the lower-level agent (70K vs. 1.75 M). We argue that 

such a significant reduction is motivated by the higher simplicity of the action space in the 

higher-level decision case, in which the agent can exploit state-of-the-art ADASs for the lower-

level longitudinal and lateral motion control, and thus focus on the strategic decisions only. An 

expert assessment also noticed a more realistic behavior by the high-level agent [54]. A 

quantitative indicator for this is given by the elimination of the collisions.   

Concerning the proposed comparison, it must be specified that the two environments are 

very similar to each other, but not exactly the same. Table 2 shows that an episode in 

Campodonico et al. [15] has fewer total vehicles (EV + NPVs), but they are slightly more 

concentrated (density factor 0.5 vs 0.4). The model presented in [15] was specifically 

developed with a large number of rewards compared to the original highway-env (11 vs 3), in 

order to better enforce traffic law and safer behavior (e.g., penalties for right overtake, unsafe 

distance to the front vehicle, hazardous lane change, steering angle).  

5.2 Driving styles 

The reduction in training time ensured by the higher-level DM module provides a significant 

advantage for training more agents, each one featuring a specific driving style.  We explored 

this by specifying different weights for the rewards and penalties with which the agent is 

trained, as shown in Table 3. In all cases, the training episode was interrupted at the occurrence 

of a collision, thus preventing the agent to get any further reward for that episode.  

 
Table 3. Reward weights for training three different driving styles. 

Driving style Collision Speed Right lane 

Comfort 30 0 0.8 

Standard 3 0.4 0.2 

Aggressive 0 0.8 0 
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The training of the comfort driving style is characterized by a high penalty to prevent 

collisions and a high reward to encourage the EV to drive in the rightmost lane. On the other 

hand, the aggressive behavior’s training provides no collision penalty and a high-speed reward. 

Finally, the standard driving style is trained as described in the previous sub-section. 

Figure 6 shows the evolution during the training of four different quantities: episode length, 

high-speed reward, right-most lane reward and collision reward (actually, penalty). Zero-

weighted rewards are ignored. 

 

 
 

Figure 6. Evolution of the training for the different driving styles. (a) Episode length, normalized from 0 

to 1 (i.e., 60 seconds), (b) High speed reward (not assigned to the comfort model), (c) Right-most 

lane reward (not assigned to the aggressive model) and (d) collision reward (not assigned to the 

aggressive model)  

Figure 6a shows that all the three models tend to achieve a similar value of episode length, 

which indicates the overall importance of completing each episode (i.e., avoid collisions). 

However, Figure 6b, 6c, and 6d indicate that this is achieved through different types of 

behavior. Figure 6b shows that the high-speed reward gained by the aggressive agent is much 

higher than for the standard agent, since its weight is twice as much (0.8 and 0.4, respectively-

Table 3). Even more apparent, the right-most lane reward for the comfort driving agent 

increases significantly, differently from the standard model, as its weight is four times larger 

(0.8 vs. 0.2) (Figure 6). Figure 6d, on the other hand, is significant, since it indicates that 

designing the reward factors may be tricky. Particularly, we see that, while the training of the 

standard agent is smooth, the training of the comfort agent is more complex, since the huge 

collision penalty puts a burden that lasts for a long time. This spurred us to consider an 

optimization to the training process, that we will present later in this section. It is important to 

highlight that the episode length results in Table 4 differ a bit from those in Figure 6a because 

they are obtained in exploitation. In contrast, Figure 6a refers to training, which also includes 

a fraction of environment exploration, leading to lower results. 
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Table 4 presents some typical vehicular metrics that we analyze in order to check whether 

the different training actually led to their respectively targeted driving styles. Particularly, it is 

apparent that the comfort model tends to drive in the right-most lane, never overtaking, at a 

much lower speed than the other driving styles. Moreover, considering the number of decision 

changes, the comfort model seems to follow a stable policy. On the other hand, the aggressive 

model features a much higher collision rate, average speed and decision change rate. Overall, 

these two models look less balanced than the standard one, which drives at high speed, with 

few collisions. 

Until now, we have trained each one of the three different agents from scratch. But this has 

involved some inconvenience, as shown in Figure 6d. In this last part of the section we explore 

an alternative technique, called curriculum learning (CL) [55], which consists of training a ML 

model starting with easier samples and then gradually increase their difficulty, as the model 

learns. Thus, we tried to train the comfort and aggressive models (i.e., using the specific  

weights of their RF), starting their learning phase from a standard model (i.e., the weights of 

the deep neural networks of the comfort and aggressive agents are initialized with the values 

of the weights of a fully trained standard model), thus embodying its previous knowledge. 

We explored CL applying the differentiated RFs for half the number of training steps (100k, 

compared to the 200k employed for training from scratch). Table 5 shows that the CL models 

are more closely related to the standard driving policy than those trained with the classical 

approach. For instance, a CL aggressive agent features a much lower collision rate and higher 

mileage. Similarly, the collision rate and decision change rate of the CL-trained comfort model 

are quite higher. These differences highlight that the CL strategies are learned atop of the 

baseline model, while the “from scratch” trained agents build up their experience during 

training without any prior influence. 

 
Table 4. Performance over 1000 episodes of the different driving styles obtained from scratch. 

Model’s style Avg. ep. 

length [s] 

Collision 

rate 

Avg. km 

travelled 

Avg. 

speed 

[m/s] 

Avg. 

decel. 

[m/s2] 

Avg. 

acc. 

[m/s2] 

Avg. 

dec. 

change 

Avg. 

left 

change 

Avg. 

right 

change 

Comfort 60 0.5% 1.43 23.9 -2.76 2.46 3.61 0.01 0.32 

Standard 59 1.2% 1.82 30.6 -4.48 2.29 8.22 0.52 0.74 

Aggressive 49 29.2% 1.62 32.8 -4.89 2.15 12.46 1.68 1.69 

 
Table 5. Performance over 1000 episodes of the different driving styles obtained from curriculum learning. 

Model’s style Avg. ep. 

length [s] 

Collision 

rate 

Avg. km 

travelled 

Avg. 

speed 

[m/s] 

Avg. 

decel. 

[m/s2] 

Avg. 

acc. 

[m/s2] 

Avg. 

dec. 

change 

Avg. 

left 

change 

Avg. 

right 

change 

Comfort 60 1% 1.43 23.9 -2.88 2.59 6.22 0 0.45 

Standard 59 1.2%  1.82 30.6 -4.48 2.29 8.22 0.52 0.74 

Aggressive 55 11.9% 1.92 33.3 -4.76 1.83 13.15 1.14 0.96 

6. Conclusions and future work 

The paper has explored the training of DRL models deployable as realistic NPVs in driving 

SGs. We have introduced a hierarchical architecture for behavioral planning of vehicle models, 

in which the agents decide their motion by taking “human-like”, high-level decisions, such as 
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“keep lane”, “overtake,” and “go to rightmost lane”. This is similar to a driver’s high-level 

reasoning and takes into account the availability of ever more sophisticated ADAS in current 

vehicles. Compared to a low-level DM system, our model performs better both in terms of 

safety and speed. As a significant advantage, the proposed approach allows reducing the 

number of training steps by more than one order of magnitude. This makes the development of 

new models much more efficient, which is key for implementing different vehicles, featuring 

different driving styles. 

As a second main contribution to advance the state of the art, we demonstrated that it is 

possible to train agents characterized by different driving behaviors, by tweaking the weights 

of the factors of a general RF. This approach avoids heuristic coding of the driving styles, 

saving development and maintenance time. The proposed agent models can then be seamlessly 

deployed in any target SG in the same environment as the one we used for training (i.e., 

highway-env). Furthermore, the information and lessons learned presented in this article can 

be useful to train similar agents in their target SG environment. 

In order to optimize the training, we employed the curriculum learning technique, starting 

the training procedure of a more specialized agent from a base model rather than from scratch. 

Results indicate that curriculum learning allows achieving the same performance, but in much 

less training iterations (thus time). However, the specialized agents tend to significantly 

“inherit” behavior from the baseline agent, which may not always be desirable. 

This paper concerns development of NPVs for driving SGs, in contexts like driving 

instruction [2] and safety awareness [3]. However, the key concepts of our work (i.e., training 

autonomous agents for various types of a SG non-player characters, and hierarchical modeling) 

are general, and may be adapted to other SGs and simulation domains as well. 

We argue that future work could explore two main directions to increase the realism of the 

vehicle behavior: the use of more accurate dynamic models inside highway-env, overcoming 

the limits of the kinematic model, and the improvement of the robustness of the training 

paradigm through a multi-agent adversarial policy (e.g., [56]). Finally, after having verified 

technical feasibility, a fundamental next step will consist in assessing the effect of the 

developed models on player’s learning and engagement in a SG, in a duly designed user study.  

Another addition to the work, is to test the presented ideas in other contexts, allowing SGs 

developers to handle the implementation of more realistic SGs features improving the realism 

and user experience. 
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